forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathcherry-pickup-ii.cpp
66 lines (62 loc) · 2.69 KB
/
cherry-pickup-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Time: O(m * n^2)
// Space: O(n^2)
class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
vector<vector<vector<int>>> dp(2,
vector<vector<int>>(grid[0].size() + 2,
vector<int>(grid[0].size() + 2, numeric_limits<int>::min())));
dp[0][1][grid[0].size()] = grid[0][0] + grid[0][grid[0].size() - 1];
int result = 0;
for (int i = 1; i < grid.size(); ++i) {
for (int j = 1; j <= grid[0].size(); ++j) {
for (int k = 1; k <= grid[0].size(); ++k) {
int max_prev_dp = numeric_limits<int>::min();
for (int d1 = -1; d1 <= 1; ++d1) {
for (int d2 = -1; d2 <= 1; ++d2) {
max_prev_dp = max(max_prev_dp, dp[(i - 1) % 2][j + d1][k + d2]);
}
}
dp[i % 2][j][k] = (max_prev_dp == numeric_limits<int>::min()) ? numeric_limits<int>::min() :
max_prev_dp + ((j != k) ? (grid[i][j - 1] + grid[i][k - 1]) : grid[i][j - 1]);
result = max(result, dp[i % 2][j][k]);
}
}
}
return result;
}
};
// Time: O(m * n^2)
// Space: O(n^2)
class Solution2 {
public:
int cherryPickup(vector<vector<int>>& grid) {
vector<vector<vector<int>>> dp(2,
vector<vector<int>>(grid[0].size(),
vector<int>(grid[0].size(), numeric_limits<int>::min())));
dp[0][0][grid[0].size() - 1] = grid[0][0] + grid[0][grid[0].size() - 1];
int result = 0;
for (int i = 1; i < grid.size(); ++i) {
for (int j = 0; j < grid[0].size(); ++j) {
for (int k = 0; k < grid[0].size(); ++k) {
int max_prev_dp = numeric_limits<int>::min();
for (int d1 = -1; d1 <= 1; ++d1) {
if (!(0 <= j + d1 && j + d1 < grid[0].size())) {
continue;
}
for (int d2 = -1; d2 <= 1; ++d2) {
if (!(0 <= k + d2 && k + d2 < grid[0].size())) {
continue;
}
max_prev_dp = max(max_prev_dp, dp[(i - 1) % 2][j + d1][k + d2]);
}
}
dp[i % 2][j][k] = (max_prev_dp == numeric_limits<int>::min()) ? numeric_limits<int>::min() :
max_prev_dp + ((j != k) ? (grid[i][j] + grid[i][k]) : grid[i][j]);
result = max(result, dp[i % 2][j][k]);
}
}
}
return result;
}
};