-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
414 lines (347 loc) · 17.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import Block
def get_model(args, n_modality, input_shape, patch_size):
if args.model == 'mae':
return MAE(n_modality=n_modality,
input_shape=input_shape, patch_size=patch_size,
embed_dim_enc=args.embed_dim_enc, embed_dim_dec=args.embed_dim_dec,
num_layer_enc=args.num_layer_enc, num_layer_dec=args.num_layer_dec,
num_head_enc=args.num_head_enc, num_head_dec=args.num_head_dec,
dropout=args.dropout, mask_ratio=args.mask_ratio)
elif args.model == 'metamae':
return MetaMAE(n_modality=n_modality,
input_shape=input_shape, patch_size=patch_size,
embed_dim_enc=args.embed_dim_enc, embed_dim_dec=args.embed_dim_dec,
num_layer_enc=args.num_layer_enc, num_layer_dec=args.num_layer_dec,
num_head_enc=args.num_head_enc, num_head_dec=args.num_head_dec,
dropout=args.dropout, mask_ratio=args.mask_ratio,
inner_lr=args.inner_lr, reg_weight=args.reg_weight, s_ratio=args.s_ratio,
use_first_order=args.use_first_order)
else:
raise NotImplementedError
class MAE(nn.Module):
def __init__(self,
n_modality: int = 1,
input_shape: tuple[int] = (3, 224, 224),
patch_size: tuple[int] = (16, 16),
embed_dim_enc: int = 1024,
embed_dim_dec: int = 512,
num_layer_enc: int = 24,
num_layer_dec: int = 8,
num_head_enc: int = 16,
num_head_dec: int = 16,
dropout: float = 0.,
mask_ratio: float = 0.75):
super().__init__()
self.mask_ratio = mask_ratio
self.input_shape = input_shape
#encoder
self.patch_embed = UnifiedPatchEmbed(n_modality=n_modality, input_shape=input_shape, patch_size=patch_size, embed_dim=embed_dim_enc)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim_enc))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim_enc), requires_grad=False)
self.dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.encoder = nn.Sequential(*[Block(embed_dim_enc, num_head_enc, drop=dropout, mlp_ratio=2) for _ in range(num_layer_enc)])
self.norm_enc = nn.LayerNorm(embed_dim_enc)
#decoder
self.decoder_embed = nn.Linear(embed_dim_enc, embed_dim_dec, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim_dec))
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim_dec), requires_grad=False)
self.decoder = nn.Sequential(*[Block(embed_dim_dec, num_head_dec, mlp_ratio=2) for _ in range(num_layer_dec)])
self.norm_dec = nn.LayerNorm(embed_dim_dec)
if self.patch_embed.n_dim == 1:
if self.patch_embed.is_tokenize_data:
self.decoder_head = nn.Linear(embed_dim_dec, embed_dim_enc, bias=True)
else:
self.decoder_head = nn.Linear(embed_dim_dec, input_shape[0]*patch_size[0], bias=True)
elif self.patch_embed.n_dim == 2:
self.decoder_head = nn.Linear(embed_dim_dec, input_shape[0]*patch_size[0]*patch_size[1], bias=True)
else:
raise NotImplementedError
self.initialize_weights()
def initialize_weights(self):
if self.patch_embed.n_dim == 1:
pos_embed = get_1d_sincos_pos_embed(self.pos_embed.shape[-1], self.patch_embed.num_patches, cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_1d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], self.patch_embed.num_patches, cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
elif self.patch_embed.n_dim == 2:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
if self.patch_embed.is_tokenize_data:
w = self.patch_embed.proj.weight.data
nn.init.xavier_uniform_(w)
else:
w = self.patch_embed.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.normal_(self.cls_token, std=.02)
nn.init.normal_(self.mask_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, batch, mode='train', **kwargs):
if mode == 'train':
return self.compute_loss(batch)
elif mode == 'feature':
return self.extract_features(batch, **kwargs)
def compute_loss(self, batch):
x, _ = batch
latent, mask, ids_restore = self.forward_encoder(x, self.mask_ratio)
pred = self.forward_decoder(latent, ids_restore)
target = self.patchify(x)
loss = self.get_recon_loss(pred, target, mask)
return dict(loss=loss)
def extract_features(self, batch, eval='global_pool'):
x = self.patch_embed(batch)
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.encoder(x)
if eval == 'global_pool':
x = self.norm_enc(x)[:, 1:].mean(dim=1)
elif eval == 'tokenize':
x = self.norm_enc(x)[:, 1:]
else:
raise NotImplementedError
return x
def patchify(self, imgs):
p = self.patch_embed.patch_size[0]
if self.patch_embed.is_tokenize_data:
return imgs
elif self.patch_embed.n_dim == 1:
assert imgs.shape[2] % p == 0
h = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], self.input_shape[0], h, p))
x = torch.einsum('nchp->nhpc', x)
x = x.reshape(shape=(imgs.shape[0], h, p*self.input_shape[0]))
elif self.patch_embed.n_dim == 2:
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], self.input_shape[0], h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * self.input_shape[0]))
return x
def unpatchify(self, x):
p = self.patch_embed.patch_size[0]
if self.patch_embed.n_dim == 1:
h == int(x.shape[1]**.5)
x = x.reshape(shape=(x.shape[0], h, p, self.input_shape[0]))
x = torch.einsum('nhpc->nchp', x)
imgs = x.reshape(shape=(x.shape[0], self.input_shape[0], h*p))
return imgs
elif self.patch_embed.n_dim == 2:
h = w = int(x.shape[1]**.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, self.input_shape[0]))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], self.input_shape[0], h * p, h * p))
return imgs
def random_masking(self, x, mask_ratio):
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def forward_encoder(self, x, mask_ratio):
x = self.patch_embed(x)
x = x + self.pos_embed[:, 1:, :]
x, mask, ids_restore = self.random_masking(x, mask_ratio)
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self.dropout(x)
x = self.encoder(x)
x = self.norm_enc(x)
return x, mask, ids_restore
def forward_decoder(self, x, ids_restore):
x = self.decoder_embed(x)
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
x = x + self.decoder_pos_embed
x = self.decoder(x)
x = self.norm_dec(x)
x = self.decoder_head(x)
x = x[:, 1:, :]
if self.patch_embed.is_tokenize_data:
x = torch.einsum('nhe,ve->nhv', x, self.patch_embed.proj.weight).transpose(1, 2)
return x
def get_recon_loss(self, pred, target, mask):
if self.patch_embed.is_tokenize_data:
loss = F.cross_entropy(pred, target, reduction='none')
else:
loss = (pred - target) ** 2
loss = loss.mean(dim=-1)
loss = (loss * mask).sum() / mask.sum()
return loss
class MetaMAE(MAE):
def __init__(self,
n_modality: int = 1,
input_shape: tuple[int] = (3, 224, 224),
patch_size: int = 16,
embed_dim_enc: int = 1024,
embed_dim_dec: int = 512,
num_layer_enc: int = 24,
num_layer_dec: int = 8,
num_head_enc: int = 16,
num_head_dec: int = 16,
dropout: float = 0.,
mask_ratio: float = 0.75,
inner_lr: float = 0.1,
reg_weight: float = 1,
s_ratio: float = 0.1,
use_first_order: bool = False):
super().__init__(n_modality, input_shape, patch_size,
embed_dim_enc, embed_dim_dec,
num_layer_enc, num_layer_dec,
num_head_enc, num_head_dec,
dropout, mask_ratio)
self.input_shape = input_shape
self.patch_size = patch_size
self.reg_weight = reg_weight
self.s_ratio = s_ratio
self.use_first_order = use_first_order
self.inner_lr = nn.Parameter(torch.tensor(inner_lr, dtype=torch.float), requires_grad=False)
self.projector = nn.Sequential(
nn.Linear(embed_dim_enc, embed_dim_enc*4, bias=False),
nn.BatchNorm1d(embed_dim_enc*4),
nn.ReLU(),
nn.Linear(embed_dim_enc*4, 128, bias=False)
)
def get_nearby_s_mask(self, mask):
unmasked = 1 - mask
if len(self.input_shape) == 2:
kernel = torch.tensor([1, 1, 1], dtype=torch.float32, device=mask.device).unsqueeze(0).unsqueeze(0)
padded_masked = F.pad(unmasked.unsqueeze(1).float(), (1, 1), mode='constant', value=0)
nearby_masks = F.conv1d(padded_masked, kernel, stride=1, padding=0).squeeze(1)
nearby_masks = nearby_masks.logical_or(unmasked).reshape(mask.shape[0], -1)
elif len(self.input_shape) == 3:
unmasked_section = unmasked.reshape(mask.shape[0], self.input_shape[1]//self.patch_size[0], self.input_shape[2]//self.patch_size[1])
kernel = torch.tensor([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=torch.float32, device=mask.device).unsqueeze(0).unsqueeze(0)
padded_masked = F.pad(unmasked_section.unsqueeze(1).float(), (1, 1, 1, 1), mode='constant', value=0)
nearby_masks = F.conv2d(padded_masked, kernel, stride=1, padding=0).squeeze(1)
nearby_masks = nearby_masks.logical_or(unmasked_section).reshape(mask.shape[0], -1)
return nearby_masks
def inner_loop_update(self, latent, mask_support, ids_restore, target):
pred = self.forward_decoder(latent, ids_restore)
loss = self.get_recon_loss(pred, target, mask_support)
grad, = torch.autograd.grad(loss*pred.shape[0], inputs=latent, create_graph=not self.use_first_order)
latent = latent - self.inner_lr * grad
return latent
def forward_loss_meta(self, latent, mask, ids_restore, target):
unmasked = 1 - mask
prev_latent = latent
latent.retain_grad()
mask_support = mask.mul(self.get_nearby_s_mask(mask)) * (torch.rand(mask.shape, device=mask.device) < self.s_ratio) + unmasked
latent = self.inner_loop_update(latent, mask_support, ids_restore, target)
#outer loop
pred = self.forward_decoder(latent, ids_restore)
loss = self.get_recon_loss(pred, target, mask)
#contrast
z1 = F.normalize(self.projector(prev_latent[:, 1:].mean(dim=1)))
z2 = F.normalize(self.projector(latent[:, 1:].mean(dim=1)))
z = torch.cat([z1, z2])
logits = torch.mm(z, z.T).div(0.5)
logits.fill_diagonal_(float('-inf'))
labels = torch.tensor(list(range(z1.shape[0], 2*z1.shape[0])) + list(range(z1.shape[0])), device=logits.device)
loss += self.reg_weight * F.cross_entropy(logits, labels)
return loss
def compute_loss(self, batch, **kwargs):
x, _ = batch
latent, mask, ids_restore = self.forward_encoder(x, self.mask_ratio)
target = self.patchify(x)
loss = self.forward_loss_meta(latent, mask, ids_restore, target)
return dict(loss=loss)
class UnifiedPatchEmbed(nn.Module):
def __init__(self,
n_modality: int = 1,
input_shape: tuple[int] = (3, 224, 224),
patch_size: tuple[int] = (16, 16),
embed_dim: int = 192):
super().__init__()
self.n_modality = n_modality
if self.n_modality == 1:
self.n_dim = len(input_shape) - 1
self.is_tokenize_data = False
if self.n_dim == 1: #input_shape: channels, seq_len or (vocab_len), seq_len
self.patch_size = patch_size
self.grid_size = (input_shape[1] // patch_size[0],)
self.num_patches = self.grid_size[0]
if isinstance(input_shape[0], tuple): #token data
self.proj = nn.Embedding(input_shape[0][0], embed_dim)
self.is_tokenize_data = True
else:
self.proj = nn.Conv1d(input_shape[0], embed_dim, kernel_size=patch_size, stride=patch_size, bias=True)
elif self.n_dim == 2:
self.patch_size = patch_size
self.grid_size = (input_shape[1] // patch_size[0], input_shape[2] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.proj = nn.Conv2d(input_shape[0], embed_dim, kernel_size=patch_size, stride=patch_size, bias=True)
else:
raise NotImplementedError
else: #TODO. Now, we do not support vision-language in this code
raise NotImplementedError
def forward(self, x):
if self.n_modality == 1:
x = self.proj(x)
if self.n_dim == 2:
x = x.flatten(2)
if not self.is_tokenize_data:
x = x.transpose(1, 2)
return x
else:
raise NotImplementedError
def get_1d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
grid = np.arange(grid_size, dtype=np.float32).reshape(1, 1, grid_size)
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb