-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmodels.py
416 lines (355 loc) · 15.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# This file contains the inference code for loading and running the closed-book and open-book QA models
import os
import csv
import glob
import gzip
import string
import sys
from typing import List, Tuple, Dict
import re
import math
import collections
import numpy as np
import unicodedata
import torch
from torch import Tensor as T
from torch import nn
from DPR.dpr.models import init_biencoder_components
from DPR.dpr.options import setup_args_gpu, print_args, set_encoder_params_from_state
from DPR.dpr.indexer.faiss_indexers import DenseIndexer, DenseFlatIndexer
#from DPR.dpr.data.reader_data import ReaderSample, ReaderPassage, get_best_spans
#from DPR.dpr.models import init_reader_components
from DPR.dpr.utils.data_utils import Tensorizer
from DPR.dpr.utils.model_utils import load_states_from_checkpoint, get_model_obj
from transformers import GPT2LMHeadModel, GPT2Tokenizer, T5ForConditionalGeneration, AutoTokenizer
from segment_fill import segment_fill
SEGMENTER_CACHE = {}
RERANKER_CACHE = {}
def setup_closedbook(process_id):
dpr = DPRForCrossword(
"checkpoints/biencoder/dpr_biencoder.bin",
"checkpoints/biencoder/wordlist.tsv",
"checkpoints/biencoder/embeddings/embeddings.json_*",
retrievalmodel=False,
process_id=process_id
)
return dpr
def setup_t5_reranker(process_id):
tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')
model = T5ForConditionalGeneration.from_pretrained('checkpoints/byt5_reranker/')
model.eval().to('cuda:'+str(process_id % torch.cuda.device_count()))
return model, tokenizer
def t5_reranker_score_with_clue(model, tokenizer, clues, possibly_ungrammatical_fills):
global RERANKER_CACHE
results = []
for clue, possibly_ungrammatical_fill in zip(clues, possibly_ungrammatical_fills):
if not possibly_ungrammatical_fill.islower():
possibly_ungrammatical_fill = possibly_ungrammatical_fill.lower()
clue = preprocess_clue_fn(clue)
if clue[-3:] == '. .':
clue = clue[:-3]
elif clue[-3:] == ' ..':
clue = clue[:-3]
elif clue[-2:] == '..':
clue = clue[:-2]
elif clue[-1] == '.':
clue = clue[:-1]
if clue + possibly_ungrammatical_fill in RERANKER_CACHE:
results.append(RERANKER_CACHE[clue + possibly_ungrammatical_fill])
continue
else:
with torch.inference_mode():
inputs = tokenizer(['Q: ' + clue], return_tensors='pt')['input_ids'].to(model.device)
labels = tokenizer([possibly_ungrammatical_fill], return_tensors='pt')['input_ids'].to(model.device)
loss = model(inputs, labels=labels)
answer_length = labels.shape[1]
logprob = -loss[0].item() * answer_length
results.append(logprob)
RERANKER_CACHE[clue + possibly_ungrammatical_fill] = logprob
return results
def preprocess_clue_fn(clue):
clue = str(clue)
# https://stackoverflow.com/questions/517923/what-is-the-best-way-to-remove-accents-normalize-in-a-python-unicode-string
clue = ''.join(c for c in unicodedata.normalize('NFD', clue) if unicodedata.category(c) != 'Mn')
clue = re.sub("\x17|\x18|\x93|\x94|“|”|''|\"\"", "\"", clue)
clue = re.sub("\x85|…", "...", clue)
clue = re.sub("\x91|\x92|‘|’", "'", clue)
clue = re.sub("‚", ",", clue)
clue = re.sub("—|–", "-", clue)
clue = re.sub("¢", " cents", clue)
clue = re.sub("¿|¡|^;|\{|\}", "", clue)
clue = re.sub("÷", "division", clue)
clue = re.sub("°", " degrees", clue)
euro = re.search("^£[0-9]+(,*[0-9]*){0,}| £[0-9]+(,*[0-9]*){0,}", clue)
if euro:
num = clue[:euro.end()]
rest_clue = clue[euro.end():]
clue = num + " Euros" + rest_clue
clue = re.sub(", Euros", " Euros", clue)
clue = re.sub("Euros [Mm]illion", "million Euros", clue)
clue = re.sub("Euros [Bb]illion", "billion Euros", clue)
clue = re.sub("Euros[Kk]", "K Euros", clue)
clue = re.sub(" K Euros", "K Euros", clue)
clue = re.sub("£", "", clue)
clue = re.sub(" *\(\d{1,},*\)$| *\(\d{1,},* \d{1,}\)$", "", clue)
clue = re.sub("&", "&", clue)
clue = re.sub("<", "<", clue)
clue = re.sub(">", ">", clue)
clue = re.sub("e\.g\.|for ex\.", "for example", clue)
clue = re.sub(": [Aa]bbreviat\.|: [Aa]bbrev\.|: [Aa]bbrv\.|: [Aa]bbrv|: [Aa]bbr\.|: [Aa]bbr", " abbreviation", clue)
clue = re.sub("abbr\.|abbrv\.", "abbreviation", clue)
clue = re.sub("Abbr\.|Abbrv\.", "Abbreviation", clue)
clue = re.sub("\(anag\.\)|\(anag\)", "(anagram)", clue)
clue = re.sub("org\.", "organization", clue)
clue = re.sub("Org\.", "Organization", clue)
clue = re.sub("Grp\.|Gp\.", "Group", clue)
clue = re.sub("grp\.|gp\.", "group", clue)
clue = re.sub(": Sp\.", " (Spanish)", clue)
clue = re.sub("\(Sp\.\)|Sp\.", "(Spanish)", clue)
clue = re.sub("Ave\.", "Avenue", clue)
clue = re.sub("Sch\.", "School", clue)
clue = re.sub("sch\.", "school", clue)
clue = re.sub("Agcy\.", "Agency", clue)
clue = re.sub("agcy\.", "agency", clue)
clue = re.sub("Co\.", "Company", clue)
clue = re.sub("co\.", "company", clue)
clue = re.sub("No\.", "Number", clue)
clue = re.sub("no\.", "number", clue)
clue = re.sub(": [Vv]ar\.", " variable", clue)
clue = re.sub("Subj\.", "Subject", clue)
clue = re.sub("subj\.", "subject", clue)
clue = re.sub("Subjs\.", "Subjects", clue)
clue = re.sub("subjs\.", "subjects", clue)
theme_clue = re.search("^.+\|[A-Z]{1,}", clue)
if theme_clue:
clue = re.sub("\|", " | ", clue)
if "Partner of" in clue:
clue = re.sub("Partner of", "", clue)
clue = clue + " and ___"
link = re.search("^.+-.+ [Ll]ink$", clue)
if link:
no_link = re.search("^.+-.+ ", clue)
x_y = clue[no_link.start():no_link.end() - 1]
x_y_lst = x_y.split("-")
clue = x_y_lst[0] + " ___ " + x_y_lst[1]
follower = re.search("^.+ [Ff]ollower$", clue)
if follower:
no_follower = re.search("^.+ ", clue)
x = clue[:no_follower.end() - 1]
clue = x + " ___"
preceder = re.search("^.+ [Pp]receder$", clue)
if preceder:
no_preceder = re.search("^.+ ", clue)
x = clue[:no_preceder.end() - 1]
clue = "___ " + x
if re.search("--[^A-Za-z]|--$", clue):
clue = re.sub("--", "__", clue)
if not re.search("_-[A-Za-z]|_-$", clue):
clue = re.sub("_-", "__", clue)
clue = re.sub("_{2,}", "___", clue)
clue = re.sub("\?$", " (wordplay)", clue)
nonverbal = re.search("\[[^0-9]+,* *[^0-9]*\]", clue)
if nonverbal:
clue = re.sub("\[|\]", "", clue)
clue = clue + " (nonverbal)"
if clue[:4] == "\"\"\" " and clue[-4:] == " \"\"\"":
clue = "\"" + clue[4:-4] + "\""
if clue[:4] == "''' " and clue[-4:] == " '''":
clue = "'" + clue[4:-4] + "'"
if clue[:3] == "\"\"\"" and clue[-3:] == "\"\"\"":
clue = "\"" + clue[3:-3] + "\""
if clue[:3] == "'''" and clue[-3:] == "'''":
clue = "'" + clue[3:-3] + "'"
return clue
def answer_clues(dpr, clues, max_answers, output_strings=False):
clues = [preprocess_clue_fn(c.rstrip()) for c in clues]
outputs = dpr.answer_clues_closedbook(clues, max_answers, output_strings=output_strings)
return outputs
class DenseRetriever(object):
"""
Does passage retrieving over the provided index and question encoder
"""
def __init__(
self,
question_encoder: nn.Module,
batch_size: int,
tensorizer: Tensorizer,
index: DenseIndexer,
device=None,
):
self.question_encoder = question_encoder
self.batch_size = batch_size
self.tensorizer = tensorizer
self.index = index
self.device = device
def generate_question_vectors(self, questions: List[str]) -> T:
n = len(questions)
bsz = self.batch_size
query_vectors = []
self.question_encoder.eval()
with torch.no_grad():
for j, batch_start in enumerate(range(0, n, bsz)):
batch_token_tensors = [
self.tensorizer.text_to_tensor(q)
for q in questions[batch_start : batch_start + bsz]
]
q_ids_batch = torch.stack(batch_token_tensors, dim=0).to(self.device)
q_seg_batch = torch.zeros_like(q_ids_batch).to(self.device)
q_attn_mask = self.tensorizer.get_attn_mask(q_ids_batch)
_, out, _ = self.question_encoder(q_ids_batch, q_seg_batch, q_attn_mask)
query_vectors.extend(out.cpu().split(1, dim=0))
query_tensor = torch.cat(query_vectors, dim=0)
assert query_tensor.size(0) == len(questions)
return query_tensor
def get_top_docs(self, query_vectors: np.array, top_docs: int = 100) -> List[Tuple[List[object], List[float]]]:
"""
Does the retrieval of the best matching passages given the query vectors batch
:param query_vectors:
:param top_docs:
:return:
"""
results = self.index.search_knn(query_vectors, top_docs)
return results
class FakeRetrieverArgs:
"""Used to surpress the existing argparse inside DPR so we can have our own argparse"""
def __init__(self):
self.do_lower_case = False
self.pretrained_model_cfg = None
self.encoder_model_type = None
self.model_file = None
self.projection_dim = 0
self.sequence_length = 512
self.do_fill_lower_case = False
self.desegment_valid_fill = False
self.no_cuda = False
self.local_rank = -1
self.fp16 = False
self.fp16_opt_level = "O1"
class DPRForCrossword(object):
"""Closedbook model for Crossword clue answering"""
def __init__(
self,
model_file,
ctx_file,
encoded_ctx_file,
batch_size=6000,
retrievalmodel=False,
process_id=0
):
self.retrievalmodel = retrievalmodel # am I a wikipedia retrieval model or a closed-book model
args = FakeRetrieverArgs()
args.model_file = model_file
args.ctx_file = ctx_file
args.encoded_ctx_file = encoded_ctx_file
args.batch_size = batch_size
self.device = torch.device("cuda:"+str(process_id%torch.cuda.device_count()))
setup_args_gpu(args)
print_args(args)
saved_state = load_states_from_checkpoint(args.model_file)
set_encoder_params_from_state(saved_state.encoder_params, args)
tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type, args, inference_only=True)
question_encoder = encoder.question_model
question_encoder = question_encoder.to(self.device)
question_encoder.eval()
# load weights from the model file
model_to_load = get_model_obj(question_encoder)
prefix_len = len("question_model.")
question_encoder_state = {
key[prefix_len:]: value
for (key, value) in saved_state.model_dict.items()
if key.startswith("question_model.")
}
model_to_load.load_state_dict(question_encoder_state)
vector_size = model_to_load.get_out_size()
index = DenseFlatIndexer(vector_size, 50000)
self.retriever = DenseRetriever(
question_encoder,
args.batch_size,
tensorizer,
index,
self.device,
)
# index all passages
ctx_files_pattern = args.encoded_ctx_file
input_paths = glob.glob(ctx_files_pattern)
self.retriever.index.index_data(input_paths)
self.all_passages = self.load_passages(args.ctx_file)
self.fill2id = {}
for key in self.all_passages.keys():
self.fill2id[
"".join(
[
letter
for letter in self.all_passages[key][1].upper()
if letter in string.ascii_uppercase
]
)
] = key
# might as well uppercase and remove non-alphas from the fills before we start to save time later
if not retrievalmodel:
temp = {}
for my_id in self.all_passages.keys():
temp[my_id] = "".join([c.upper() for c in self.all_passages[my_id][1] if c.upper() in string.ascii_uppercase])
self.len_all_passages = len(list(self.all_passages.values()))
self.all_passages = temp
@staticmethod
def load_passages(ctx_file: str) -> Dict[object, Tuple[str, str]]:
docs = {}
if ctx_file.endswith(".gz"):
with gzip.open(ctx_file, "rt") as tsvfile:
reader = csv.reader(
tsvfile,
delimiter="\t",
)
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != "id":
docs[row[0]] = (row[1], row[2])
else:
with open(ctx_file) as tsvfile:
reader = csv.reader(
tsvfile,
delimiter="\t",
)
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != "id":
docs[row[0]] = (row[1], row[2])
return docs
def answer_clues_closedbook(self, questions, max_answers, output_strings=False):
# assumes clues are preprocessed
assert self.retrievalmodel == False
questions_tensor = self.retriever.generate_question_vectors(questions)
if max_answers > self.len_all_passages:
max_answers = self.len_all_passages
# get top k results
top_ids_and_scores = self.retriever.get_top_docs(questions_tensor.numpy(), max_answers)
if not output_strings:
return top_ids_and_scores
else:
# get the string forms
all_answers = []
all_scores = []
for ans in top_ids_and_scores:
all_answers.append(list(map(self.all_passages.get, ans[0])))
all_scores.append(ans[1])
return all_answers, all_scores
def get_wikipedia_docs(self, questions, max_docs):
# assumes clues are preprocessed
assert self.retrievalmodel
questions_tensor = self.retriever.generate_question_vectors(questions)
# get top k results. add 2 in case of duplicates (see below
top_ids_and_scores = self.retriever.get_top_docs(questions_tensor.numpy(), max_docs + 2)
all_paragraphs = []
for ans in top_ids_and_scores:
paragraphs = []
for i in range(len(ans[0])):
id_ = ans[0][i]
id_ = id_.replace("wiki:", "")
mydocument = self.all_passages[id_]
if mydocument in paragraphs:
print("woah, duplicate!!!")
continue
paragraphs.append(mydocument)
all_paragraphs.append(paragraphs[0:max_docs])
return all_paragraphs