Skip to content

Latest commit

 

History

History
137 lines (96 loc) · 3.45 KB

README.md

File metadata and controls

137 lines (96 loc) · 3.45 KB

pycrispr

a tool for designing crispr libraries

Build Status Coverage Status Python 2.7 Status Python 3.3 Status Python 3.4 Status Python 3.5 Status

Installation

install blast

```
sudo apt-get install ncbi-blast+
```

the above installs in an outdated version on ubuntu 14.04, which is buggy

```
$ blastn -version
blastn: 2.2.28+
Package: blast 2.2.28, build Jun  3 2013 11:17:14
```

do this instead:

```
conda install -c https://conda.anaconda.org/bioconda blast
```

actually no, it is not working either! so do this instead:

```
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/ncbi-blast-2.3.0+-x64-linux.tar.gz
$ tar xvfp ncbi-blast-2.3.0+-x64-linux.tar.gz
$ export PATH=”$PATH:$HOME/ncbi-blast-2.2.29+/bin”
$ mkdir ./ncbi-blast-2.2.29+/db
$export BLASTDB=”$HOME/ncbi-blast-2.2.29+/db”
    
```

results in a version of ncbi which supports -max_hsps (previously -max_hsps_per_target was buggy)

```
$ blastn -version
blastn: 2.2.31+
Package: blast 2.2.31, build Dec  3 2015 17:28:17
```

genral cli tools

```
sudo apt-get install tree
sudo apt-get install jq
```

bioinformatics tools

```
sudo apt-get install bedtools
sudo apt-get install tabix
sudo apt-get install igv
```

this software

```
pip install git+https://github.com/alaindomissy/buffet.git#egg=pycrispr
```

primer3 dependency is not yet included in the setup.py config, and needs to be pip installed separately

```
pip install primer3-py
```

pycrispr runs on Python 2.7, 3.3 and 3.4

Usage

Given a genomic interval, and a rference genome, obtain all candidate crispr guides, resulting from enzymatic digestion via cripsr-eating protocol

```
enzymatic_protospacers(
    '~/scaffolds_directory/',
    'chr6:136640001-136680000',
    'mm8.fasta'
    )
```

Score candidates, define and rank by yield of good guides all possible clusters of consecutive good guides

```
high_specificity_clusters(
    scaffolds_directory,
    genomic_coord, reference,
    genome
    )
```

Advanced options:

```
minimum_specificity_clusters(
    scaffolds_directory, genomic_coord, reference, genome,
    chunk_size=25, 
    max_hsps=25,
    ref_substrate_id='chr6',
    low=75, 
    high=75, 
    load_genome=False, 
    howmany=None
    )
```

Given a required number of guides, design amplification primers for enough top-yielding good-guides clusters

```
primer_design(scaffolds_directory, genomic_coord, reference, genome, required_number_of_guides)
```

Documentation

Online access

Docker image