-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunsupervised_ml.py
195 lines (151 loc) · 8.36 KB
/
unsupervised_ml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from types import SimpleNamespace
from typing import List, Dict, Tuple, Union, Optional
import torch
import torch.nn as nn
from context_printer import Color
from context_printer import ContextPrinter as Ctp
# noinspection PyProtectedMember
from torch.utils.data import DataLoader
from architectures import Threshold
from federated_util import model_poisoning, model_aggregation
from metrics import BinaryClassificationResult
from print_util import print_autoencoder_loss_stats, print_rates, print_autoencoder_loss_header
def optimize(model: nn.Module, data: torch.Tensor, optimizer: torch.optim.Optimizer, criterion: torch.nn.Module) -> torch.Tensor:
output = model(data)
# Since the normalization is made by the model itself, the output is computed on the normalized x
# so we need to compute the loss with respect to the normalized x
loss = criterion(output, model.normalize(data))
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
return loss
def train_autoencoder(model: nn.Module, params: SimpleNamespace, train_loader, lr_factor: float = 1.0) -> None:
criterion = nn.MSELoss(reduction='none')
optimizer = params.optimizer(model.parameters(), **params.optimizer_params)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * lr_factor
scheduler = params.lr_scheduler(optimizer, **params.lr_scheduler_params)
model.train()
num_elements = len(train_loader.dataset)
num_batches = len(train_loader)
batch_size = train_loader.batch_size
print_autoencoder_loss_header(first_column='Epoch', print_lr=True)
for epoch in range(params.epochs):
losses = torch.zeros(num_elements)
for i, (data,) in enumerate(train_loader):
start = i * batch_size
end = start + batch_size
if i == num_batches - 1:
end = num_elements
loss = optimize(model, data, optimizer, criterion)
losses[start:end] = loss.mean(dim=1)
print_autoencoder_loss_stats('[{}/{}]'.format(epoch + 1, params.epochs), losses, lr=optimizer.param_groups[0]['lr'])
scheduler.step()
def train_autoencoders_fedsgd(global_model: nn.Module, models: List[nn.Module], dls: List[DataLoader], params: SimpleNamespace,
lr_factor: float = 1.0, mimicked_client_id: Optional[int] = None)\
-> Tuple[torch.nn.Module, List[torch.nn.Module]]:
criterion = nn.MSELoss(reduction='none')
lr = params.optimizer_params['lr'] * lr_factor
for model in models:
model.train()
for data_tuple in zip(*dls):
for model, (data,) in zip(models, data_tuple):
optimizer = params.optimizer(model.parameters(), lr=lr, weight_decay=params.optimizer_params['weight_decay'])
optimize(model, data, optimizer, criterion)
# Model poisoning attacks
models = model_poisoning(global_model, models, params, mimicked_client_id=mimicked_client_id, verbose=False)
# Aggregation
global_model, models = model_aggregation(global_model, models, params, verbose=False)
return global_model, models
def compute_reconstruction_losses(model: nn.Module, dataloader) -> torch.Tensor:
with torch.no_grad():
criterion = nn.MSELoss(reduction='none')
model.eval()
num_elements = len(dataloader.dataset)
num_batches = len(dataloader)
batch_size = dataloader.batch_size
losses = torch.zeros(num_elements)
for i, (x,) in enumerate(dataloader):
output = model(x)
loss = criterion(output, model.normalize(x))
start = i * batch_size
end = start + batch_size
if i == num_batches - 1:
end = num_elements
losses[start:end] = loss.mean(dim=1)
return losses
def test_autoencoder(model: nn.Module, threshold: nn.Module, dataloaders: Dict[str, DataLoader]) -> BinaryClassificationResult:
print_autoencoder_loss_header(print_positives=True)
result = BinaryClassificationResult()
for key, dataloader in dataloaders.items():
losses = compute_reconstruction_losses(model, dataloader)
predictions = torch.gt(losses, threshold.threshold).int()
current_results = count_scores(predictions, is_attack=(key != 'benign'))
title = ' '.join(key.split('_')).title() # Transforms for example the key "mirai_ack" into the title "Mirai Ack"
print_autoencoder_loss_stats(title, losses, positives=current_results.tp + current_results.fp, n_samples=current_results.n_samples())
result += current_results
return result
# this function will train each model on its associated dataloader, and will print the title for it
def multitrain_autoencoders(trains: List[Tuple[str, DataLoader, nn.Module]], params: SimpleNamespace, lr_factor: float = 1.0,
main_title: str = 'Multitrain autoencoders', color: Union[str, Color] = Color.NONE) -> None:
Ctp.enter_section(main_title, color)
for i, (title, dataloader, model) in enumerate(trains):
Ctp.enter_section('[{}/{}] '.format(i + 1, len(trains)) + title + ' ({} samples)'.format(len(dataloader.dataset[:][0])),
color=Color.NONE, header=' ')
train_autoencoder(model, params, dataloader, lr_factor)
Ctp.exit_section()
Ctp.exit_section()
# Compute a single threshold value. If no quantile is indicated, it's the average reconstruction loss + its standard deviation, otherwise
# it's the quantile of the loss.
def compute_threshold_value(losses: torch.Tensor, quantile: Optional[float] = None) -> torch.Tensor:
if quantile is None:
threshold_value = losses.mean() + losses.std()
else:
threshold_value = losses.quantile(quantile)
return threshold_value
# opts should be a list of tuples (title, dataloader_benign_opt, model)
# this function will test each model on its associated dataloader, and will find the correct threshold for them
def compute_thresholds(opts: List[Tuple[str, DataLoader, nn.Module]], quantile: Optional[float] = None,
main_title: str = 'Computing the thresholds', color: Union[str, Color] = Color.NONE) -> List[Threshold]:
Ctp.enter_section(main_title, color)
thresholds = []
for i, (title, dataloader, model) in enumerate(opts):
Ctp.enter_section('[{}/{}] '.format(i + 1, len(opts)) + title + ' ({} samples)'.format(len(dataloader.dataset[:][0])),
color=Color.NONE, header=' ')
print_autoencoder_loss_header()
losses = compute_reconstruction_losses(model, dataloader)
print_autoencoder_loss_stats('Benign (opt)', losses)
threshold_value = compute_threshold_value(losses, quantile)
threshold = Threshold(threshold_value)
thresholds.append(threshold)
Ctp.print('The threshold is {:.4f}'.format(threshold.threshold.item()))
Ctp.exit_section()
Ctp.exit_section()
return thresholds
def count_scores(predictions: torch.Tensor, is_attack: bool) -> BinaryClassificationResult:
positive_predictions = predictions.sum().item()
negative_predictions = len(predictions) - positive_predictions
results = BinaryClassificationResult()
if is_attack:
results.add_tp(positive_predictions)
results.add_fn(negative_predictions)
else:
results.add_fp(positive_predictions)
results.add_tn(negative_predictions)
return results
# this function will test each model on its associated dataloader, and will print the title for it
def multitest_autoencoders(tests: List[Tuple[str, Dict[str, DataLoader], nn.Module, nn.Module]], main_title: str = 'Multitest autoencoders',
color: Union[str, Color] = Color.NONE) -> BinaryClassificationResult:
Ctp.enter_section(main_title, color)
result = BinaryClassificationResult()
for i, (title, dataloaders, model, threshold) in enumerate(tests):
n_samples = sum([len(dataloader.dataset[:][0]) for dataloader in dataloaders.values()])
Ctp.enter_section('[{}/{}] '.format(i + 1, len(tests)) + title + ' ({} samples)'.format(n_samples), color=Color.NONE, header=' ')
current_result = test_autoencoder(model, threshold, dataloaders)
result += current_result
Ctp.exit_section()
print_rates(current_result)
Ctp.exit_section()
Ctp.print('Average result')
print_rates(result)
return result