-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsupervised_experiments.py
179 lines (134 loc) · 9.62 KB
/
supervised_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from types import SimpleNamespace
from typing import Tuple, List
import torch
from context_printer import Color
from context_printer import ContextPrinter as Ctp
# noinspection PyProtectedMember
from torch.utils.data import DataLoader
from architectures import BinaryClassifier, NormalizingModel
from data import ClientData, FederationData, device_names, get_benign_attack_samples_per_device
from federated_util import init_federated_models, model_aggregation, select_mimicked_client, model_poisoning
from metrics import BinaryClassificationResult
from ml import set_model_sub_div, set_models_sub_divs
from print_util import print_federation_round, print_rates, print_federation_epoch
from supervised_data import get_train_dl, get_test_dl, prepare_dataloaders
from supervised_ml import multitrain_classifiers, multitest_classifiers, train_classifier, test_classifier, train_classifiers_fedsgd
def local_classifier_train_val(train_data: ClientData, val_data: ClientData, params: SimpleNamespace) -> BinaryClassificationResult:
p_train = params.p_train_val * (1. - params.val_part)
p_val = params.p_train_val * params.val_part
# Creating the dataloaders
benign_samples_per_device, attack_samples_per_device = get_benign_attack_samples_per_device(p_split=p_train,
benign_prop=params.benign_prop,
samples_per_device=params.samples_per_device)
train_dl = get_train_dl(train_data, params.train_bs, benign_samples_per_device=benign_samples_per_device,
attack_samples_per_device=attack_samples_per_device, cuda=params.cuda)
benign_samples_per_device, attack_samples_per_device = get_benign_attack_samples_per_device(p_split=p_val, benign_prop=params.benign_prop,
samples_per_device=params.samples_per_device)
val_dl = get_test_dl(val_data, params.test_bs, benign_samples_per_device=benign_samples_per_device,
attack_samples_per_device=attack_samples_per_device, cuda=params.cuda)
# Initialize the model and compute the normalization values with the client's local training data
model = NormalizingModel(BinaryClassifier(activation_function=params.activation_fn, hidden_layers=params.hidden_layers),
sub=torch.zeros(params.n_features), div=torch.ones(params.n_features))
if params.cuda:
model = model.cuda()
set_model_sub_div(params.normalization, model, train_dl)
# Local training
Ctp.enter_section('Training for {} epochs with {} samples'.format(params.epochs, len(train_dl.dataset[:][0])), color=Color.GREEN)
train_classifier(model, params, train_dl)
Ctp.exit_section()
# Local validation
Ctp.print('Validating with {} samples'.format(len(val_dl.dataset[:][0])))
result = test_classifier(model, val_dl)
print_rates(result)
return result
def local_classifiers_train_test(train_data: FederationData, local_test_data: FederationData,
new_test_data: ClientData, params: SimpleNamespace) \
-> Tuple[BinaryClassificationResult, BinaryClassificationResult]:
train_dls, local_test_dls, new_test_dl = prepare_dataloaders(train_data, local_test_data, new_test_data, params, federated=False)
# Initialize the models and compute the normalization values with each client's local training data
n_clients = len(params.clients_devices)
models = [NormalizingModel(BinaryClassifier(activation_function=params.activation_fn, hidden_layers=params.hidden_layers),
sub=torch.zeros(params.n_features), div=torch.ones(params.n_features)) for _ in range(n_clients)]
if params.cuda:
models = [model.cuda() for model in models]
set_models_sub_divs(params.normalization, models, train_dls, color=Color.RED)
# Training
multitrain_classifiers(trains=list(zip(['Training client {} on: '.format(i) + device_names(client_devices)
for i, client_devices in enumerate(params.clients_devices)],
train_dls, models)),
params=params, main_title='Training the clients', color=Color.GREEN)
# Local testing
local_result = multitest_classifiers(tests=list(zip(['Testing client {} on: '.format(i) + device_names(client_devices)
for i, client_devices in enumerate(params.clients_devices)],
local_test_dls, models)),
main_title='Testing the clients on their own devices', color=Color.BLUE)
# New devices testing
new_devices_result = multitest_classifiers(
tests=list(zip(['Testing client {} on: '.format(i) + device_names(params.test_devices) for i in range(n_clients)],
[new_test_dl for _ in range(n_clients)], models)),
main_title='Testing the clients on the new devices: ' + device_names(params.test_devices),
color=Color.DARK_CYAN)
return local_result, new_devices_result
def federated_testing(global_model: torch.nn.Module, local_test_dls: List[DataLoader], new_test_dl: DataLoader,
params: SimpleNamespace, local_results: List[BinaryClassificationResult],
new_devices_results: List[BinaryClassificationResult]) -> None:
# Global model testing on each client's data
tests = []
for client_id, client_devices in enumerate(params.clients_devices):
if client_id not in params.malicious_clients:
tests.append(('Testing global model on: ' + device_names(client_devices), local_test_dls[client_id], global_model))
result = multitest_classifiers(tests=tests,
main_title='Testing the global model on data from all clients', color=Color.BLUE)
local_results.append(result)
# Global model testing on new devices
result = multitest_classifiers(
tests=list(zip(['Testing global model on: ' + device_names(params.test_devices)], [new_test_dl], [global_model])),
main_title='Testing the global model on the new devices: ' + device_names(params.test_devices),
color=Color.DARK_CYAN)
new_devices_results.append(result)
def fedavg_classifiers_train_test(train_data: FederationData, local_test_data: FederationData,
new_test_data: ClientData, params: SimpleNamespace) \
-> Tuple[List[BinaryClassificationResult], List[BinaryClassificationResult]]:
# Preparation of the dataloaders
train_dls, local_test_dls, new_test_dl = prepare_dataloaders(train_data, local_test_data, new_test_data, params, federated=True)
# Initialization of the models
global_model, models = init_federated_models(train_dls, params, architecture=BinaryClassifier)
# Initialization of the results
local_results, new_devices_results = [], []
# Selection of a client to mimic in case we use the mimic attack
mimicked_client_id = select_mimicked_client(params)
for federation_round in range(params.federation_rounds):
print_federation_round(federation_round, params.federation_rounds)
# Local training of each client
multitrain_classifiers(trains=list(zip(['Training client {} on: '.format(i) + device_names(client_devices)
for i, client_devices in enumerate(params.clients_devices)],
train_dls, models)),
params=params, lr_factor=(params.gamma_round ** federation_round),
main_title='Training the clients', color=Color.GREEN)
# Model poisoning attacks
models = model_poisoning(global_model, models, params, mimicked_client_id=mimicked_client_id, verbose=True)
# Aggregation
global_model, models = model_aggregation(global_model, models, params, verbose=True)
# Testing
federated_testing(global_model, local_test_dls, new_test_dl, params, local_results, new_devices_results)
Ctp.exit_section()
return local_results, new_devices_results
def fedsgd_classifiers_train_test(train_data: FederationData, local_test_data: FederationData,
new_test_data: ClientData, params: SimpleNamespace) \
-> Tuple[List[BinaryClassificationResult], List[BinaryClassificationResult]]:
# Preparation of the dataloaders
train_dls, local_test_dls, new_test_dl = prepare_dataloaders(train_data, local_test_data, new_test_data, params, federated=True)
# Initialization of the models
global_model, models = init_federated_models(train_dls, params, architecture=BinaryClassifier)
# Initialization of the results
local_results, new_devices_results = [], []
# Selection of a client to mimic in case we use the mimic attack
mimicked_client_id = select_mimicked_client(params)
for epoch in range(params.epochs):
print_federation_epoch(epoch, params.epochs)
lr_factor = params.lr_scheduler_params['gamma'] ** (epoch // params.lr_scheduler_params['step_size'])
global_model, models = train_classifiers_fedsgd(global_model, models, train_dls, params, epoch,
lr_factor=lr_factor, mimicked_client_id=mimicked_client_id)
federated_testing(global_model, local_test_dls, new_test_dl, params, local_results, new_devices_results)
Ctp.exit_section()
return local_results, new_devices_results