-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain.py
364 lines (308 loc) · 14.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
SMASH Training Function
Andy Brock, 2017
This script trains and tests a SMASH network, or a resulting network.
Based on Jan Schlüter's DenseNet training code:
https://github.com/Lasagne/Recipes/blob/master/papers/densenet
'''
import os
import logging
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable as V
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from utils import train_parser, get_data_loader, MetricsLogger, progress, count_flops
# Set the recursion limit to avoid problems with deep nets
sys.setrecursionlimit(5000)
def train_test(depth, width, N, N_max, which_dataset,
bottleneck, max_bottleneck, depth_compression,
max_dilate, max_kernel, max_groups, var_op, big_op, long_op,
gates, op_bn, preactivation,
var_nl, var_ks, var_group,
seed, augment, validate, epochs, save_weights, batch_size,
resume, model, SMASH, rank, init_from_SMASH,
fp16, parallel, validate_every, duplicate_at_checkpoints, fold,
top5):
# Quick hack to get # classes
i = 2
nClasses = int(which_dataset[-i:])
while nClasses == 0:
i += 1
nClasses = int(which_dataset[-i:])
# Check to see if we're actually using SMASH or just using this as
# boilerplate.
SMASHING = True if SMASH is None and model[:5] == 'SMASH' else False
# Seed RNG
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
# Create logs and weights folder if they don't exist
if not os.path.exists('logs'):
os.mkdir('logs')
if not os.path.exists('weights'):
os.mkdir('weights')
# Name of the file to which we're saving losses and errors.
if save_weights is 'default_save':
save_weights = '_'.join([item for item in
[model,
'D' + str(depth) if SMASH is None else None,
'K' + str(width) if SMASH is None else None,
'N'+str(N) if SMASHING else None,
'Nmax' + str(N_max) if SMASHING else None,
'maxbneck' + str(max_bottleneck) if SMASHING else None,
'op_bn' if op_bn else None,
'varop' if var_op else None,
'bigop' if big_op else None,
'longop' if long_op else None,
'static_ks' if not var_ks else None,
'static_group' if not var_group else None,
'gates' if gates else None,
'postac' if not preactivation else None,
'SMASH' if SMASHING else 'Main_'+SMASH if model[:5] == 'SMASH' else None,
'Rank' + str(rank) if SMASH is not None else None,
'fp16' if fp16 else None,
which_dataset,
'seed' + str(seed),
str(epochs)+'epochs'] if item is not None])
metrics_fname = 'logs/' + save_weights + '_log.jsonl'
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s| %(message)s')
logging.info('Metrics will be saved to {}'.format(metrics_fname))
mlog = MetricsLogger(metrics_fname, reinitialize=(not resume))
# Import the model module
model_module = __import__(model)
# Build network, either by initializing it or loading a pre-trained
# network.
if resume:
logging.info('loading network ' + save_weights + '...')
net = torch.load('weights/'+save_weights + '.pth')
if parallel:
parnet = torch.nn.DataParallel(net)
if fp16:
net = net.half()
# Which epoch we're starting from
start_epoch = net.epoch + 1 if hasattr(net, 'epoch') else 0
# Rescale iteration counter if batchsize requires it.
if not hasattr(net,'batch_size'):
print('resetting batch size')
net.batch_size = 50
net.j = int(net.j * net.batch_size / float(batch_size))
net.batch_size = batch_size
# If the model name doesn't start with SMASH, assume we're trying out
# either VGG or a ResNet or a DenseNet
elif model[:5] != 'SMASH':
net = model_module.Network(width, depth,
nClasses=nClasses,
epochs=epochs)
net = net.cuda()
net.batch_size = batch_size
if fp16:
net = net.half()
if parallel:
parnet = torch.nn.DataParallel(net)
start_epoch = 0
# If we're SMASHing, instantiate SMASH net
elif SMASH is None:
logging.info('Instantiating SMASH network with model ' + model + '...')
net = model_module.SMASH(depth=depth, width=width,
N=N, N_max=N_max,
nClasses=nClasses,
bottleneck=bottleneck,
max_bottleneck=max_bottleneck,
depth_compression=depth_compression,
max_dilate=max_dilate,
max_kernel=max_kernel,
max_groups=max_groups,
var_op=var_op,
big_op=big_op,
long_op=long_op,
gates=gates,
batchnorm=op_bn,
preactivation=preactivation,
var_nl=var_nl,
var_ks=var_ks,
var_group=var_group)
net = net.cuda()
net.batch_size = batch_size
if fp16:
net = net.half()
if hasattr(net,'c'):
net.c = net.c.half()
if hasattr(net,'z'):
net.z = net.z.half()
if parallel:
parnet = torch.nn.DataParallel(net)
start_epoch = 0
# If we're not SMASHing we must be using a derivative network.
else:
logging.info('Instantiating main network with model ' + model
+ ', and SMASH network ' + SMASH +'...')
# Load results of SMASH evaluation
archs = np.load(SMASH+'_archs.npz', encoding='bytes')['archs']
print('Using architecture rank %i with SMASH score of %f and estimated FLOPs of %e.'%(rank, archs[rank][-1], count_flops(archs[rank],which_dataset)))
# logging.info('Using architecture rank ' + str(rank)
# + ' with SMASH score of ' + str(archs[rank][-1])
# +', estimated FLOPs are ' + str(count_flops(archs[rank])))
net = model_module.MainNet(list(archs[rank]), nClasses=nClasses,
var_ks=var_ks, var_op=var_op,
big_op=big_op, op_bn=op_bn)
net = net.cuda()
net.batch_size = batch_size
if parallel:
parnet = torch.nn.DataParallel(net)
if fp16:
net = net.half()
start_epoch = 0
# If we wish to initialize our derivative network using the parameters
# predicted by the SMASH network, call this.
if init_from_SMASH:
logging.info('Initializing using SMASH parameters...')
SMASH_net = torch.load(SMASH+'.pth')
net.init_from_SMASH(SMASH_net.sample_weights(*archs[rank][:10]),
SMASH_net.W, SMASH_net.conv1,
SMASH_net.trans1, SMASH_net.trans2,
SMASH_net.bn1, SMASH_net.fc)
del(SMASH_net)
logging.info('Number of params: {}'.format(
sum([p.data.nelement() for p in net.parameters()]))
)
# Get information specific to each dataset
train_loader,test_loader = get_data_loader(which_dataset, augment,
validate, batch_size,
fold)
# Training Function, presently only returns training loss
# x: input data
# y: target labels
def train_fn(x, y):
net.optim.zero_grad()
input = V(x.cuda().half()) if fp16 else V(x.cuda())
# If training a SMASH net, we will not have been provided a pre-trained SMASH net.
if SMASH is None and model[:5] == 'SMASH':
arch = net.sample_architecture()
w = net.sample_weights(*arch)
# input = [input,w,arch]
if parallel:
# the cat() call here is to ensure that one w gets passed to each
# GPU. Probably more robust to have it be something like
# [w]*num_devices but we'll roll with this for now.
output = parnet(input, torch.cat([w]*len(parnet.device_ids),0), *arch)
else:
output = net(input,w,*arch)
else:
if parallel:
output = parnet(input)
else:
output = net(input)
loss = F.nll_loss(output, V(y.cuda()))
training_error = output.data.max(1)[1].cpu().ne(y).sum()
loss.backward()
net.optim.step()
return loss.data[0], training_error
# Testing function, returns test loss and test error for a batch
# x: input data
# y: target labels
def test_fn(x, y):
# the cat() call here is to ensure that one w gets passed to each
# GPU. Probably more robust to have it be something like
# [w]*num_devices but we'll roll with this for now.
input = V(x.cuda().half(), volatile=True) if fp16 else V(x.cuda(), volatile=True)
if SMASH is None and model[:5] == 'SMASH':
arch = net.sample_architecture()
w = net.sample_weights(*arch)
# input = [input,w,arch]
if parallel:
output = parnet(input, torch.cat([w]*len(parnet.device_ids),0), *arch)
else:
output = net(input,w,*arch)
else:
if parallel:
output = parnet(input)
else:
output = net(input)
test_loss = F.nll_loss(output, V(y.cuda(), volatile=True)).data[0]
# If we're running Imagenet, we may want top-5 error:
if top5:
top5_preds = np.argsort(output.data.cpu().numpy())[:,:-6:-1]
test_error = len(y) - np.sum([np.any(top5_i == y_i) for top5_i, y_i in zip(top5_preds,y)])
else:
# Get the index of the max log-probability as the prediction.
pred = output.data.max(1)[1].cpu()
test_error = pred.ne(y).sum()
return test_loss, test_error
# Finally, launch the training loop.
logging.info('Starting training at epoch '+str(start_epoch)+'...')
for epoch in range(start_epoch, epochs):
# Pin the current epoch on the network.
net.epoch = epoch
# shrink learning rate at scheduled intervals, if desired
if 'epoch' in net.lr_sched and epoch in net.lr_sched['epoch']:
logging.info('Annealing learning rate...')
# Optionally checkpoint at annealing
if net.checkpoint_before_anneal:
torch.save(net,'weights/' + str(epoch) + '_' + save_weights + '.pth')
for param_group in net.optim.param_groups:
param_group['lr'] *= 0.1
# List where we'll store training loss
train_loss, train_err = [], []
# Prepare the training data
batches = progress(
train_loader, desc='Epoch %d/%d, Batch ' % (epoch + 1, epochs),
total=len(train_loader.dataset) // batch_size)
# Put the network into training mode
net.train()
# Execute training pass
for x, y in batches:
# Update LR if using cosine annealing
if 'itr' in net.lr_sched:
net.update_lr(epochs*len(train_loader.dataset) // batch_size)
loss, err = train_fn(x, y)
train_loss.append(loss)
train_err.append(err)
# Report training metrics
train_loss = float(np.mean(train_loss))
train_err = 100 * float(np.sum(train_err)) / len(train_loader.dataset)
print(' training loss:\t%.6f, training error: \t%.2f%%' % (train_loss, train_err))
mlog.log(epoch=epoch, train_loss=train_loss, train_err=train_err)
# Optionally, take a pass over the validation or test set.
if validate and not ((epoch+1) % validate_every):
# Lists to store
val_loss, val_err = [], []
# Set network into evaluation mode
net.eval()
# Execute validation pass
for x, y in test_loader:
loss, err = test_fn(x, y)
val_loss.append(loss)
val_err.append(err)
# Report validation metrics
val_loss = float(np.mean(val_loss))
val_err = 100 * float(np.sum(val_err)) / len(test_loader.dataset)
print(' validation loss:\t%.6f' % val_loss)
print(' validation error:\t%.2f%%' % val_err)
mlog.log(epoch=epoch, val_loss=val_loss, val_err=val_err)
# Save weights for this epoch
print('saving weights to ' + save_weights + '...')
torch.save(net, 'weights/' + save_weights + '.pth')
# If requested, save a checkpointed copy with a different name
# so that we have them for reference later.
if duplicate_at_checkpoints and not epoch%5:
torch.save(net, 'weights/' + save_weights + '_e' + str(epoch) + '.pth')
# At the end of it all, save weights even if we didn't checkpoint.
if save_weights:
torch.save(net, 'weights/' + save_weights + '.pth')
def main():
# parse command line
parser = train_parser()
args = parser.parse_args()
print(args)
# run
train_test(**vars(args))
if __name__ == '__main__':
main()