-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga.py
executable file
·78 lines (69 loc) · 3.31 KB
/
ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 24 18:05:45 2020
@author: ajay
"""
'''
1. Load data
2. Load previous model and weights
3. Train for the same number of iterations
4. Save weights
'''
import numpy
import random
# Converting each solution from matrix to vector.
def mat_to_vector(mat_pop_weights):
pop_weights_vector = []
for sol_idx in range(mat_pop_weights.shape[0]):
curr_vector = []
for layer_idx in range(mat_pop_weights.shape[1]):
vector_weights = numpy.reshape(mat_pop_weights[sol_idx, layer_idx], newshape=(mat_pop_weights[sol_idx, layer_idx].size))
curr_vector.extend(vector_weights)
pop_weights_vector.append(curr_vector)
return numpy.array(pop_weights_vector)
# Converting each solution from vector to matrix.
def vector_to_mat(vector_pop_weights, mat_pop_weights):
mat_weights = []
for sol_idx in range(mat_pop_weights.shape[0]):
start = 0
end = 0
for layer_idx in range(mat_pop_weights.shape[1]):
end = end + mat_pop_weights[sol_idx, layer_idx].size
curr_vector = vector_pop_weights[sol_idx, start:end]
mat_layer_weights = numpy.reshape(curr_vector, newshape=(mat_pop_weights[sol_idx, layer_idx].shape))
mat_weights.append(mat_layer_weights)
start = end
return numpy.reshape(mat_weights, newshape=mat_pop_weights.shape)
def select_mating_pool(pop, fitness, num_parents):
# Selecting the best individuals in the current generation as parents for producing the offspring of the next generation.
parents = numpy.empty((num_parents, pop.shape[1]))
for parent_num in range(num_parents):
max_fitness_idx = numpy.where(fitness == numpy.max(fitness))
max_fitness_idx = max_fitness_idx[0][0]
parents[parent_num, :] = pop[max_fitness_idx, :]
fitness[max_fitness_idx] = -99999999999
return parents
def crossover(parents, offspring_size):
offspring = numpy.empty(offspring_size)
# The point at which crossover takes place between two parents. Usually, it is at the center.
crossover_point = numpy.uint32(offspring_size[1]/2)
for k in range(offspring_size[0]):
# Index of the first parent to mate.
parent1_idx = k%parents.shape[0]
# Index of the second parent to mate.
parent2_idx = (k+1)%parents.shape[0]
# The new offspring will have its first half of its genes taken from the first parent.
offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point]
# The new offspring will have its second half of its genes taken from the second parent.
offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]
return offspring
def mutation(offspring_crossover, mutation_percent):
num_mutations = numpy.uint32((mutation_percent*offspring_crossover.shape[1])/100)
mutation_indices = numpy.array(random.sample(range(0, offspring_crossover.shape[1]), num_mutations))
# Mutation changes a single gene in each offspring randomly.
for idx in range(offspring_crossover.shape[0]):
# The random value to be added to the gene.
random_value = numpy.random.uniform(-1.0, 1.0, 1)
offspring_crossover[idx, mutation_indices] = offspring_crossover[idx, mutation_indices] + random_value
return offspring_crossover