-
Notifications
You must be signed in to change notification settings - Fork 244
/
Copy path(Elsevier 2024)CF_loss.py
66 lines (51 loc) · 3.17 KB
/
(Elsevier 2024)CF_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch.nn as nn
import torch
import torch.nn.functional as F
# 论文:CF-Loss: Clinically-relevant feature optimised loss function for retinal multi-class vessel segmentation and vascular feature measurement
def encode_mask_3d(ground_truth, num_classes=4):
batch_size, _, depth, height, width = ground_truth.size()
one_hot = torch.zeros((batch_size, num_classes, depth, height, width), device=ground_truth.device)
ground_truth = ground_truth.long()
one_hot = one_hot.scatter_(1, ground_truth, 1)
return one_hot
class CF_Loss_3D(nn.Module):
def __init__(self, img_depth, beta, alpha, gamma):
super(CF_Loss_3D, self).__init__()
self.beta = beta
self.alpha = alpha
self.gamma = gamma
self.img_depth = img_depth
self.CE = nn.CrossEntropyLoss()
self.p = torch.tensor([img_depth], dtype=torch.float, device='cuda')
self.n = torch.log(self.p) / torch.log(torch.tensor([2.0], device='cuda'))
self.n = torch.floor(self.n)
self.sizes = 2 ** torch.arange(self.n.item(), 1, -1, device='cuda').to(dtype=torch.int)
def get_count_3d(self, sizes, p, masks_pred_softmax):
counts = torch.zeros((masks_pred_softmax.shape[0], len(sizes), 2), device='cuda')
index = 0
for size in sizes:
# 对3D数据使用3D池化
stride = (1, size, size) # 保持深度方向不变
pool = nn.AvgPool3d(kernel_size=(1, size, size), stride=stride)
S = pool(masks_pred_softmax)
S = S * ((S > 0) & (S < (size * size)))
counts[..., index, 0] = (S[:, 0, ...] - S[:, 2, ...]).abs().sum() / (S[:, 2, ...] > 0).sum()
counts[..., index, 1] = (S[:, 1, ...] - S[:, 3, ...]).abs().sum() / (S[:, 3, ...] > 0).sum()
index += 1
return counts
def forward(self, prediction, ground_truth):
# 假设ground_truth已经是适当格式
ground_truth_encoded = encode_mask_3d(ground_truth) # 需要定义适用于3D数据的encode_mask_3d
prediction_softmax = F.softmax(prediction, dim=1)
loss_CE = self.CE(prediction_softmax, ground_truth.squeeze(1).long())
Loss_vd = (torch.abs(prediction_softmax[:, 1, ...].sum() - ground_truth_encoded[:, 1, ...].sum()) + torch.abs(prediction_softmax[:, 2, ...].sum() - ground_truth_encoded[:, 2, ...].sum())) / (prediction_softmax.shape[0] * prediction_softmax.shape[2] * prediction_softmax.shape[3] * prediction_softmax.shape[4])
prediction_softmax = prediction_softmax[:, 1:3, ...]
ground_truth_encoded = ground_truth_encoded[:, 1:3, ...]
combined = torch.cat((prediction_softmax, ground_truth_encoded), 1)
counts = self.get_count_3d(self.sizes, self.p, combined)
artery_ = torch.sqrt(torch.sum(self.sizes * ((counts[..., 0]) ** 2)))
vein_ = torch.sqrt(torch.sum(self.sizes * ((counts[..., 1]) ** 2)))
size_t = torch.sqrt(torch.sum(self.sizes ** 2))
loss_FD = (artery_ + vein_) / size_t / prediction_softmax.shape[0]
loss_value = self.beta * loss_CE + self.alpha * loss_FD + self.gamma * Loss_vd
return loss_value