-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_supergaussian.py
251 lines (217 loc) · 10.4 KB
/
main_supergaussian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from plyfile import PlyData, PlyElement
import json
from multiprocessing import Array, Value
from sg_utils.sg_helper import *
import multiprocessing
import os
import random
import torch
import time
from dataclasses import dataclass
import numpy as np
from PIL import Image
import tyro
from dataset.mvimg_test_dataset import MVImageNetTestDataset
from torch.utils.data import DataLoader
DEBUG = 0 # change to 0 for multiprocess, 1 for single process.
@dataclass
class Args:
curr_division_id: int = 0 # no need to change. it is used to support multi program for faster parallel processing
division: int = 1 # no need to change. Total program to run. it is used to support multi program for faster parallel processing
upsampling_prior = 'realbasicvsr' # 'realbasicvsr' or 'videogigagan' or 'gigagan'
procedure: tuple = ('upsampling', 'fitting_with_3dgs', ) # operations from upsampling, bilinear_X, fitting_with_3dgs
optimization_step = 2000 # fixed optimization steps for the gaussian splats used in our paper. Of course, the higher the better performance, but it takes longer.
"""optimization steps for the gaussian splats"""
workers_per_gpu: int = (1 if DEBUG else 1)
"""number of workers per gpu"""
num_gpus: int = (1 if DEBUG else -1)
"""number of gpus to use. """
gaussian_version: str = 'LR_131072_gaussian' # low_res gaussian version which has a fixed 131072 gaussians for each scene.
"""version of the gaussian splats"""
def storePly(path, xyz, rgb):
# Define the dtype for the structured array
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, 'vertex')
ply_data = PlyData([vertex_element])
ply_data.write(path)
def prepare_rgbd(path, point_size, xyz, rgb):
ply_path = os.path.join(path, f"surface_pcd_{point_size}_seed_0.ply")
xyz = xyz.numpy()
rgb = rgb.numpy()
storePly(ply_path, xyz, rgb)
return ply_path
def worker(
queue: multiprocessing.JoinableQueue,
count: multiprocessing.Value,
num_of_gaussians: int,
gpu_meta,
lock
) -> None:
while True:
item = queue.get()
if item is None:
break
batch, gpu_i = item
curr_output_path = f"{os.path.dirname(os.path.abspath(__file__))}/{args.upsampling_prior}_test_results/{batch['scene_dir'][0]}/super_gaussian_with_{args.upsampling_prior}"
os.makedirs(curr_output_path, exist_ok=True)
with open(f"{curr_output_path}/config.json", 'w+') as f:
json.dump(args.__dict__, f, indent=4)
try:
# dump to super_gaussian scene format
image_folder = curr_output_path + f'/64x64' # low-res is 64x64
os.makedirs(image_folder, exist_ok=True)
image_paths = []
for image_i, image in enumerate(batch['images'][0]):
image_path = image_folder + "/{}".format(batch["img_filenames"][image_i][0])
Image.fromarray(np.clip(image.numpy() * 255, 0, 255).transpose(1,2,0).astype(np.uint8)).save(
image_path)
image_paths.append(image_path)
high_res_image_folder = curr_output_path + f'/gt/high_res_images'
os.makedirs(high_res_image_folder, exist_ok=True)
for image_i, image in enumerate(batch['high_res_images'][0]):
image_path = high_res_image_folder + "/{}".format(batch["img_filenames"][image_i][0])
Image.fromarray(np.clip(image.numpy() * 255, 0, 255).transpose(1,2,0).astype(np.uint8)).save(
image_path)
res = {
"camera_model": "OPENCV",
"fl_x": batch['fxfycxcy'][0, 0, 0].item(),
"fl_y": batch['fxfycxcy'][0, 0, 1].item(),
"cx": batch['fxfycxcy'][0, 0, 2].item(),
"cy": batch['fxfycxcy'][0, 0, 3].item(),
"w": 256,
"h": 256,
"k1": 0.0,
"k2": 0.0,
"k3": 0.0,
"k4": 0.0,
"p1": 0.0,
"p2": 0.0,
"frames": []
}
for image_i, path in enumerate(image_paths):
c2w = torch.linalg.inv(batch["extrinsics"][0][image_i]).numpy()
c2w[:3, 1:3] *= -1
res['frames'].append({
"file_path": '/'.join(path.replace('64x64', 'images').split('/')[-2:]),
"transform_matrix": c2w.tolist(),
})
transform_path = f"{curr_output_path}/transforms.json"
with open(transform_path, 'w+') as f:
json.dump(res, f, indent=4)
print("step 0 completes!")
except Exception as e:
print(str(e))
return
initial_pcd_path = prepare_rgbd(curr_output_path, num_of_gaussians, batch['xyz'][0], batch['rgb'][0])
step = 1
latest_resolution = batch['images'].shape[4] # since our images are processed to be square images
latest_res_path = image_folder
latest_gaussian_ckpt = None
for plan in args.procedure:
curr_output_path = f"{os.path.dirname(os.path.abspath(__file__))}/{args.upsampling_prior}_test_results/{batch['scene_dir'][0]}/super_gaussian_with_{args.upsampling_prior}/step_{step}_{plan}"
if plan == 'upsampling':
output_resolution = latest_resolution * 4 # since the VSR prior is doing 4x upsampling
if args.upsampling_prior == 'realbasicvsr':
run_video_upsampling('realbasicvsr', gpu_i,
latest_res_path,
f"{curr_output_path}/{output_resolution}x{output_resolution}",
)
elif args.upsampling_prior == 'videogigagan':
# we loaded the upsampled images for MVImgNet using videogigagan
shutil.copytree(f"data/mvimgnet_testset_500/{batch['scene_dir'][0]}/upsampled_rgb_videogigagan",
f"{curr_output_path}/{output_resolution}x{output_resolution}")
elif args.upsampling_prior == 'gigagan':
# we loaded the upsampled images for MVImgNet using gigagan
shutil.copytree(f"data/mvimgnet_testset_500/{batch['scene_dir'][0]}/gigagan_image",
f"{curr_output_path}/{output_resolution}x{output_resolution}")
else:
raise
latest_resolution = output_resolution
latest_res_path = f"{curr_output_path}/{output_resolution}x{output_resolution}"
elif 'bilinear' in plan:
output_resolution = int(plan.split('_')[-1])
run_bilinear_resampling(output_resolution,
latest_res_path,
f"{curr_output_path}/{output_resolution}x{output_resolution}")
latest_resolution = output_resolution
latest_res_path = f"{curr_output_path}/{output_resolution}x{output_resolution}"
elif plan == 'fitting_with_3dgs':
optimization_step = args.optimization_step
fitting_with_3dgs(latest_res_path,
high_res_image_folder,
transform_path,
initial_pcd_path,
latest_gaussian_ckpt,
optimization_step,
curr_output_path,
num_of_gaussians,
gpu_i)
latest_res_path = f"{curr_output_path}/point_cloud/iteration_{optimization_step}/predicted"
latest_gaussian_ckpt = f"{curr_output_path}/point_cloud/iteration_{optimization_step}/point_cloud.ply"
else:
raise NotImplementedError
print(f"step {step} ({plan}) completes!")
step += 1
with lock.get_lock():
gpu_meta[gpu_i] = gpu_meta[gpu_i] - 1
with count.get_lock():
count.value += 1
queue.task_done()
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system')
args = tyro.cli(Args)
queue = multiprocessing.JoinableQueue()
count = multiprocessing.Value("i", 0)
mv_imagenet_dataset = MVImageNetTestDataset(args.gaussian_version)
# Start worker processes on each of the GPUs
if args.num_gpus == -1:
args.num_gpus = torch.cuda.device_count()
args.num_of_gaussians = int(args.gaussian_version.split('_')[1])
gpu_meta = Array('i', [0] * args.num_gpus)
lock = Value('i', 0)
for gpu_i in range(args.num_gpus):
for worker_i in range(args.workers_per_gpu):
process = multiprocessing.Process(
target=worker, args=(queue, count, args.num_of_gaussians, gpu_meta, lock
)
)
process.daemon = True
process.start()
# Add items to the queue
random.seed(0)
np.random.seed(0)
dataloader = DataLoader(
mv_imagenet_dataset,
batch_size=1, # DO NOT CHANGE
shuffle=False,
num_workers=(0 if DEBUG else 4),
)
for idx, batch in enumerate(dataloader):
gpu = idx % args.num_gpus
while True:
with lock.get_lock():
if gpu_meta[gpu] < args.workers_per_gpu:
queue.put((batch, gpu))
gpu_meta[gpu] = 1 + gpu_meta[gpu]
break
gpu = (gpu + 1) % args.num_gpus
time.sleep(0.1)
print(f"Finished {count.value}/{len(mv_imagenet_dataset)}")
while True:
time.sleep(5)
print(f"Finished {count.value}/{len(mv_imagenet_dataset)}")
if count.value == len(mv_imagenet_dataset):
break
# Wait for all tasks to be completed
queue.join()
count.value = 0
# Add sentinels to the queue to stop the worker processes
for i in range(args.num_gpus * args.workers_per_gpu):
queue.put(None)