-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.r
92 lines (71 loc) · 3.39 KB
/
main.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Loading necessary libraries
library(ggplot2)
# Fetching data
data <- airquality
# Data Cleaning - Remove rows with NA
data <- data[!is.na(data$Ozone) & !is.na(data$Solar.R) & !is.na(data$Wind) & !is.na(data$Temp) & !is.na(data$Month) & !is.na(data$Day), ]
# Analysis Part 1: Calculate average Solar Radiation for each month
avg_solar_May <- 0
avg_solar_June <- 0
avg_solar_July <- 0
avg_solar_August <- 0
avg_solar_September <- 0
for (i in 1:nrow(data)) {
if (data$Month[i] == 5) {
avg_solar_May <- avg_solar_May + data$Solar.R[i]
} else if (data$Month[i] == 6) {
avg_solar_June <- avg_solar_June + data$Solar.R[i]
} else if (data$Month[i] == 7) {
avg_solar_July <- avg_solar_July + data$Solar.R[i]
} else if (data$Month[i] == 8) {
avg_solar_August <- avg_solar_August + data$Solar.R[i]
} else {
avg_solar_September <- avg_solar_September + data$Solar.R[i]
}
}
# Calculating average and print to console
avg_solar_May <- avg_solar_May/31
print(paste("Average Solar Radiation for May: ", avg_solar_May))
avg_solar_June <- avg_solar_June/30
print(paste("Average Solar Radiation for June: ", avg_solar_June))
avg_solar_July <- avg_solar_July/31
print(paste("Average Solar Radiation for July: ", avg_solar_July))
avg_solar_August <- avg_solar_August/31
print(paste("Average Solar Radiation for August: ", avg_solar_August))
avg_solar_September <- avg_solar_September/30
print(paste("Average Solar Radiation for September: ", avg_solar_September))
# Analysis Part 2: Correlation between Ozone and Solar Radiation for each month
correlation_May <- cor(data$Ozone[data$Month == 5], data$Solar.R[data$Month == 5])
print(paste("Correlation for May: ", correlation_May))
correlation_June <- cor(data$Ozone[data$Month == 6], data$Solar.R[data$Month == 6])
print(paste("Correlation for June: ", correlation_June))
correlation_July <- cor(data$Ozone[data$Month == 7], data$Solar.R[data$Month == 7])
print(paste("Correlation for July: ", correlation_July))
correlation_August <- cor(data$Ozone[data$Month == 8], data$Solar.R[data$Month == 8])
print(paste("Correlation for August: ", correlation_August))
correlation_September <- cor(data$Ozone[data$Month == 9], data$Solar.R[data$Month == 9])
print(paste("Correlation for September: ", correlation_September))
# Visualization
plot_shapes <- vector("character", length=nrow(data))
for (i in 1:nrow(data)) {
if (correlation_May > 0.5) {
plot_shapes[i] <- 19
} else if (correlation_June > 0.5) {
plot_shapes[i] <- 17
} else {
plot_shapes[i] <- 15
}
}
# Save Plots
g1 <- ggplot(data[data$Month == 5,], aes(x = Solar.R, y = Ozone)) + geom_point(aes(shape = factor(Month))) + ggtitle("May")
ggsave("plot_may.png", g1)
g2 <- ggplot(data[data$Month == 6,], aes(x = Solar.R, y = Ozone)) + geom_point(aes(shape = factor(Month))) + ggtitle("June")
ggsave("plot_june.png", g2)
g3 <- ggplot(data[data$Month == 7,], aes(x = Solar.R, y = Ozone)) + geom_point(aes(shape = factor(Month))) + ggtitle("July")
ggsave("plot_july.png", g3)
g4 <- ggplot(data[data$Month == 8,], aes(x = Solar.R, y = Ozone)) + geom_point(aes(shape = factor(Month))) + ggtitle("August")
ggsave("plot_august.png", g4)
g5 <- ggplot(data[data$Month == 9,], aes(x = Solar.R, y = Ozone)) + geom_point(aes(shape = factor(Month))) + ggtitle("September")
ggsave("plot_september.png", g5)
# Save data
write.csv(data, "cleaned_data.csv", row.names = FALSE)