-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtexturegen_tf.py
218 lines (168 loc) · 7.51 KB
/
texturegen_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#THIS IS AN OLD SCRIPT. use pytorch and texturegen_pytorch.py
import os
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['xla_gpu_cuda_data_dir'] = 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.5'
import numpy as np
import glob
import matplotlib.pyplot as plt
import tensorflow as tf
import time
import sys
IS_COLAB = 'google.colab' in sys.modules
print("THIS IS AN OLD SCRIPT. use pytorch and texturegen_pytorch.py")
print(f"IS_COLAB: {IS_COLAB}")
OUTPUT_SHAPE = [512,512]
PATCH_SHAPE = [16,16]
BATCH_SIZE = 64
STACKING_SIZE = 2
LEARNING_RATE_D = 0.004
LEARNING_RATE_G = 0.001
SAVE_INTERVAL = 1024
#SRC_IMAGE = "sky.png"
#SRC_IMAGE = "gravel.png"
#SRC_IMAGE = "grassflower.png"
SRC_IMAGE = "ff6.png"
PRINT_TIME = 5000
PATCH_SHAPE = tf.convert_to_tensor(PATCH_SHAPE)
def img_int8tofloat(x):
return tf.cast(x,tf.float32)/255.0*2.0-1.0
if IS_COLAB:
from google.colab import drive
drive.mount('/content/gdrive')
imgfilename = f"/content/gdrive/My Drive/texgen/input/{SRC_IMAGE}"
else:
imgfilename = f"inputs\\{SRC_IMAGE}"
real_img = img_int8tofloat(tf.io.decode_image(tf.io.read_file(imgfilename)))
real_img = real_img[None]
print(real_img.shape, real_img.dtype)
@tf.function(jit_compile=False)
def realimg():
pshape = PATCH_SHAPE
multiplier = tf.random.uniform([], minval=1, maxval=5, dtype=tf.dtypes.int32)
ys = tf.random.uniform([BATCH_SIZE,STACKING_SIZE], minval=0, maxval=1000000000, dtype=tf.dtypes.int32)
xs = tf.random.uniform([BATCH_SIZE,STACKING_SIZE], minval=0, maxval=1000000000, dtype=tf.dtypes.int32)
out = []
for b_i in range(BATCH_SIZE):
stack = []
for s_i in range(STACKING_SIZE):
actualp = pshape
y = ys[b_i,s_i]%(real_img.shape[1]-actualp[0])
x = xs[b_i,s_i]%(real_img.shape[2]-actualp[1])
patch = real_img[
:,
y:y+actualp[0],
x:x+actualp[1]
]
stack.append(patch)
out.append(tf.concat(stack,axis=-1))
ret = tf.concat(out,axis=0)
return ret
class FakeImg(tf.keras.Model):
def __init__(self):
super(FakeImg,self).__init__()
initer = tf.zeros_initializer()
#initer = tf.random_uniform_initializer(minval=-1.0, maxval=1.0)
self.img = self.add_weight('img',shape=[1,OUTPUT_SHAPE[0],OUTPUT_SHAPE[1],3], initializer=initer, trainable=True)
def build(self, shape):
pass
#initer = tf.zeros_initializer()
#initer = tf.random_uniform_initializer(minval=-1.0, maxval=1.0)
#self.img = self.add_weight('img',shape=[1,OUTPUT_SHAPE[0],OUTPUT_SHAPE[1],3], initializer=initer, trainable=True)
@tf.function(jit_compile=False)
def call(self, _):
processed_img = self.img
processed_img = tf.reshape(processed_img, [1,OUTPUT_SHAPE[0],OUTPUT_SHAPE[1],3])
processed_img = tf.concat([processed_img, processed_img[:,:PATCH_SHAPE[0]-1]], axis=-3)
processed_img = tf.concat([processed_img, processed_img[:,:,:PATCH_SHAPE[1]-1]], axis=-2)
ys = tf.random.uniform([BATCH_SIZE*STACKING_SIZE], minval=0, maxval=OUTPUT_SHAPE[0], dtype=tf.dtypes.int32)
xs = tf.random.uniform([BATCH_SIZE*STACKING_SIZE], minval=0, maxval=OUTPUT_SHAPE[1], dtype=tf.dtypes.int32)
out = []
for b_i in range(BATCH_SIZE):
stack = []
for s_i in range(STACKING_SIZE):
bs_i = b_i*STACKING_SIZE+s_i
patch = processed_img[:,ys[bs_i]:ys[bs_i]+PATCH_SHAPE[0], xs[bs_i]:xs[bs_i]+PATCH_SHAPE[1]]
patch = tf.reshape(patch, [1, PATCH_SHAPE[0], PATCH_SHAPE[1], 3])
stack.append(patch)
out.append(tf.concat(stack,axis=-1))
ret = tf.concat(out,axis=0)
ret = tf.reshape(ret, [BATCH_SIZE, PATCH_SHAPE[0], PATCH_SHAPE[1], STACKING_SIZE*3])
#print(f"returning fake: {ret.shape}")
return ret
class Discriminator(tf.keras.Model):
def __init__(self):
super(Discriminator,self).__init__()
self.convs = []
self.convs.append(tf.keras.layers.Conv2D(filters=24*4, kernel_size=3, activation=tf.nn.relu, padding="same"))
self.convs.append(tf.keras.layers.Conv2D(filters=32*4, kernel_size=3, activation=tf.nn.relu, padding="same"))
self.convs.append(tf.keras.layers.Conv2D(filters=64*4, kernel_size=3, activation=tf.nn.relu, padding="same"))
self.convs2 = []
self.convs2.append(tf.keras.layers.Conv2D(filters=24*4, kernel_size=3, activation=tf.nn.relu, padding="same"))
self.convs2.append(tf.keras.layers.Conv2D(filters=32*4, kernel_size=3, activation=tf.nn.relu, padding="same"))
self.convs2.append(tf.keras.layers.Conv2D(filters=64*4, kernel_size=3, activation=tf.nn.relu, padding="same"))
self.lns = [tf.keras.layers.LayerNormalization(axis=-1) for _ in range(3)]
self.lns2 = [tf.keras.layers.LayerNormalization(axis=-1) for _ in range(3)]
self.pools = [tf.keras.layers.AveragePooling2D() for _ in range(2)]
self.pools.append(None)
self.lastdense = tf.keras.layers.Dense(1, use_bias=False)
@tf.function(jit_compile=True)
def call(self, inputdata):
for n in range(3):
inputdata = self.convs[n](inputdata)
inputdata = inputdata + self.convs2[n](self.lns2[n](inputdata))
inputdata = self.lns[n](inputdata)
if self.pools[n] is not None:
inputdata = self.pools[n](inputdata)
inputdata = tf.reshape(inputdata, [inputdata.shape[0], -1])
inputdata = self.lastdense(inputdata)
inputdata = tf.squeeze(inputdata, axis=-1)
return inputdata
fakeimg = FakeImg()
d = Discriminator()
optimizer_d = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE_D, amsgrad=True)
optimizer_g = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE_G, amsgrad=True)
iters = 0
@tf.function(jit_compile=False)
def do_thing():
fakes = d(fakeimg(1))
reals = d(realimg())
reals = reals[None,:]
fakes = fakes[:,None]
return fakes-reals
@tf.function(jit_compile=False)
def train_D():
#train discriminator
with tf.GradientTape() as tape:
loss = tf.math.softplus(do_thing())
gradients = tape.gradient(loss, d.trainable_variables)
optimizer_d.apply_gradients(zip(gradients, d.trainable_variables))
@tf.function(jit_compile=False)
def train_G():
#train generator
with tf.GradientTape() as tape:
loss = tf.nn.relu(-do_thing())
gradients = tape.gradient(loss, fakeimg.trainable_variables)
optimizer_g.apply_gradients(zip(gradients, fakeimg.trainable_variables))
currtime = time.time()
curriters = 0
while True:
iters += 1
curriters += 1
train_D()
if iters >= 64:
train_G()
if (time.time()-currtime)*1000.0 > PRINT_TIME:
delta = time.time()-currtime
print(f"#{iters}, {delta*1000.0/curriters} ms/iter")
currtime = time.time()
curriters = 0
#print(f"{iters}",end=" \r")asd asd asd asd
if iters%SAVE_INTERVAL == 0:
img = (tf.squeeze(fakeimg.img, axis=0)+1.0)*127.5
img = tf.clip_by_value(img, 0.0, 255.0)
img = tf.cast(img, tf.dtypes.uint8)
if IS_COLAB:
tf.io.write_file(f"/content/gdrive/My Drive/texgen/{iters}.png", tf.io.encode_png(img))
else:
tf.io.write_file(f"next_{iters}.png", tf.io.encode_png(img))
#print(tf.reduce_sum(fakeimg.img))