-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtexturegen_pytorch.py
323 lines (254 loc) · 13.2 KB
/
texturegen_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Std. lib imports
import os
import time
import sys
from pathlib import Path
from typing import Dict, List, Any
from argparse import ArgumentParser
# 3rd-party imports
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.functional import F
import torchvision.io as io
from torch.nn.modules.pooling import FractionalMaxPool2d, LPPool2d
from PIL import Image
import matplotlib.pyplot as plt
def parse_res_str(res: str) -> List[int]:
return list(map(int, res.replace(' ', "").lower().split('x')))
def res_str(res: List[int]) -> str:
return f"{res[0]}x{res[1]}"
argparser = ArgumentParser()
argparser.description = "Something something experimental texture image generator ... ."
argparser.usage = f"'python3 {Path(__file__).name} -i {os.sep}path{os.sep}to{os.sep}image.png' [--help]"
DEFAULT_PARAMS: Dict[str, Any] = {"out_shape": [512, 512],
"patch_shape": [32, 32],
"batchsize": 64,
"stacking_size": 3,
"lr_init_d": 0.004,
"lr_init_g": 0.0015,
"seed": None,
"n_checkpoint": 256,
"torch_compile": False,
"rot_invariant": False,
"aug_flip_xy": False,
}
argparser.add_argument("-i", "--input", type=str, required=True, help="Image file to generate textures from")
argparser.add_argument("-r", "--res", type=str, default=res_str(DEFAULT_PARAMS["out_shape"]), help="Output image resolution, e.g. '512x512' (width x height)")
argparser.add_argument("-ps", "--patch-size", type=str, default=res_str(DEFAULT_PARAMS["patch_shape"]), help="The sampling patch size, e.g. '32x32' (width x height)")
argparser.add_argument("-bs", "--batch-size", type=int, default=DEFAULT_PARAMS["batchsize"], help="The per-GPU batch size to use")
argparser.add_argument("-ss", "--stack-size", type=int, default=DEFAULT_PARAMS["stacking_size"], help="Number of samples to compare each iteration. 2-3 recommended.")
argparser.add_argument("-s", "--seed", type=int, default=DEFAULT_PARAMS["seed"], help="Make the texture generator deterministic with a seed number of choice")
argparser.add_argument("-lr-d", "--learning-rate-discriminator", type=float, default=DEFAULT_PARAMS["lr_init_d"], help="Initial learning-rate for discriminator network")
argparser.add_argument("-lr-g", "--learning-rate-generator", type=float, default=DEFAULT_PARAMS["lr_init_g"], help="Initial learning-rate for generator network")
#argparser.add_argument("-l", "--log", action="store_true", help="Log results to disk")
#argparser.add_argument("-l", "--log", type=str, default=None, help="Name of file to log results to (filename will be extended with a UTC datetime prefix)")
argparser.add_argument("--save-interval", type=int, default=DEFAULT_PARAMS["n_checkpoint"], help="Save training progress every ith step")
argparser.add_argument("-c", "--compile", action="store_true", help="Use Torch Compile for faster learning")
argparser.add_argument("--device", type=int, default=0, help="Index of GPU to use. For multi-GPU machines (0, 1, ..., k)")
argparser.add_argument("--a", "--activation", type=str, default="relu", help="Name of activation function between the convolution layers to try")
# ------ A few untested ideas yet to be discussed ------
#
argparser.add_argument("-ri", "--rotation-invariant", action="store_true", help="Features in the input image can be generated at any angle (0-360 degrees)") # TODO: Try randomly rotated patches?
argparser.add_argument("-f", "--flip", type=str, default=DEFAULT_PARAMS["n_checkpoint"], help="Add horizontally and/or vertically flipped image features for extra data, e.g 'x' for horizontal, 'xy' for both axes")
args = argparser.parse_args()
OUTPUT_SHAPE = parse_res_str(args.res)[::-1] # WxH -> HxW
PATCH_SHAPE = parse_res_str(args.patch_size)[::-1] # WxH -> HxW
BATCH_SIZE = args.batch_size
STACKING_SIZE = args.stack_size
LEARNING_RATE_D = args.learning_rate_discriminator
LEARNING_RATE_G = args.learning_rate_generator
SAVE_INTERVAL = args.save_interval
SRC_IMAGE = Path(args.input)
PRINT_TIME = 5000
TORCH_COMPILE = args.compile
SEED: int = args.seed
device_i: int = args.device
if not SRC_IMAGE.exists():
print(f"Input image file '{args.input}' not found.", file=sys.stderr)
exit(1)
if SEED is not None:
# import random
# random.seed(SEED)
# Ref. https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
torch.use_deterministic_algorithms(True)
np.random.seed(SEED)
torch.manual_seed(SEED)
print(f"RNG seed is {SEED} (numpy, torch)")
IS_COLAB = 'google.colab' in sys.modules
print(f"IS_COLAB: {IS_COLAB}")
IMGNAME: str = f"{SRC_IMAGE.name.split('.')[0]}_res{args.res}_patch{args.patch_size}_bs{BATCH_SIZE}_seed{SEED}_stacking{STACKING_SIZE}_gpu{device_i}_relu"
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
if IS_COLAB:
from google.colab import drive
drive.mount('/content/gdrive')
imgfilename = f"/content/gdrive/My Drive/texgen/input/{SRC_IMAGE}"
else:
imgfilename = SRC_IMAGE
real_img = Image.open(imgfilename)
real_img = transforms.ToTensor()(real_img)[:3, :, :] # Strip alpha-channel if present
real_img = real_img*2.0-1.0
real_img = real_img.unsqueeze(0).to(device, dtype=torch.float16)
fake_patch_unfold = nn.Unfold(kernel_size=(PATCH_SHAPE[0], PATCH_SHAPE[1]))
real_patch_unfold = nn.Unfold(kernel_size=(PATCH_SHAPE[0], PATCH_SHAPE[1]))
real_img = real_patch_unfold(real_img)
print(real_img.shape, real_img.dtype)
def realimg():
output_indices = torch.randint(0, real_img.shape[2], (BATCH_SIZE*STACKING_SIZE,))
output = real_img[:, :, output_indices]
output = output.transpose(1,2).contiguous()
output = output.view(BATCH_SIZE,IMAGE_CHANNELS*output.shape[1]//BATCH_SIZE,PATCH_SHAPE[0], PATCH_SHAPE[1])
return output.to(dtype=torch.float32)
# Calculate the maximum starting indices for the patches
max_i = real_img.shape[0]
max_j = real_img.shape[1]
# Generate random starting points for the patches
start_is = torch.randint(0, max_i, (BATCH_SIZE*STACKING_SIZE,), device=device)
start_js = torch.randint(0, max_j, (BATCH_SIZE*STACKING_SIZE,), device=device)
# Initialize a tensor to hold the patches
patches = torch.zeros((BATCH_SIZE*STACKING_SIZE, IMAGE_CHANNELS, PATCH_SHAPE[0], PATCH_SHAPE[1]), device=device)
# Extract the patches
for k in range(BATCH_SIZE*STACKING_SIZE):
patches[k] = real_img[:, :, start_is[k]:start_is[k]+PATCH_SHAPE[0], start_js[k]:start_js[k]+PATCH_SHAPE[1]]
return patches.view(BATCH_SIZE,IMAGE_CHANNELS*STACKING_SIZE,PATCH_SHAPE[0], PATCH_SHAPE[1]).contiguous()
class FakeImg(nn.Module):
def __init__(self):
super(FakeImg, self).__init__()
self.img = nn.Parameter(torch.zeros(1, IMAGE_CHANNELS, OUTPUT_SHAPE[0], OUTPUT_SHAPE[1], dtype=torch.float32).to(device))
def forward(self):
processed_img = self.img
processed_img = torch.cat([processed_img, processed_img[:, :, :PATCH_SHAPE[0] - 1, :]], dim=2)
processed_img = torch.cat([processed_img, processed_img[:, :, :, :PATCH_SHAPE[1] - 1]], dim=3)
# Calculate the maximum starting indices for the patches
max_i = OUTPUT_SHAPE[0]
max_j = OUTPUT_SHAPE[1]
# Generate random starting points for the patches
start_is = torch.randint(0, max_i, (BATCH_SIZE*STACKING_SIZE,), device=device)
start_js = torch.randint(0, max_j, (BATCH_SIZE*STACKING_SIZE,), device=device)
# Initialize a tensor to hold the patches
patches = torch.zeros((BATCH_SIZE*STACKING_SIZE, IMAGE_CHANNELS, PATCH_SHAPE[0], PATCH_SHAPE[1]), device=device)
# Extract the patches
for k in range(BATCH_SIZE*STACKING_SIZE):
patches[k] = processed_img[:, :, start_is[k]:start_is[k]+PATCH_SHAPE[0], start_js[k]:start_js[k]+PATCH_SHAPE[1]]
return patches.view(BATCH_SIZE,IMAGE_CHANNELS*STACKING_SIZE,PATCH_SHAPE[0], PATCH_SHAPE[1]).contiguous()
"""#img_crop_x = torch.randint(0, PATCH_SHAPE[0], ())
#img_crop_y = torch.randint(0, PATCH_SHAPE[1], ())
#processed_img = processed_img[:, :, img_crop_y:, img_crop_x:]
output = fake_patch_unfold(processed_img)
output_indices = torch.randint(0, output.shape[2], (BATCH_SIZE*STACKING_SIZE,))
output = output[:, :, output_indices]
output = output.transpose(1,2).contiguous()
output = output.view(BATCH_SIZE,IMAGE_CHANNELS*output.shape[1]//BATCH_SIZE,PATCH_SHAPE[0], PATCH_SHAPE[1]).contiguous()
return output"""
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.convs = nn.ModuleList([
nn.Conv2d(in_channels=IMAGE_CHANNELS * STACKING_SIZE, out_channels=24 * 4, kernel_size=3, padding='same'),
nn.Conv2d(in_channels=24 * 4, out_channels=32 * 4, kernel_size=3, padding='same'),
nn.Conv2d(in_channels=32 * 4, out_channels=64 * 4, kernel_size=3, padding='same')
])
self.convs2 = nn.ModuleList([
nn.Conv2d(in_channels=24 * 4, out_channels=24 * 4, kernel_size=3, padding='same'),
nn.Conv2d(in_channels=32 * 4, out_channels=32 * 4, kernel_size=3, padding='same'),
nn.Conv2d(in_channels=64 * 4, out_channels=64 * 4, kernel_size=3, padding='same')
])
self.lns = nn.ModuleList([nn.LayerNorm(24 * 4),
nn.LayerNorm(32 * 4),
nn.LayerNorm(64 * 4)])
self.lns2 = nn.ModuleList([nn.LayerNorm(24 * 4),
nn.LayerNorm(32 * 4),
nn.LayerNorm(64 * 4)])
self.pools = nn.ModuleList([nn.AvgPool2d(kernel_size=2),
nn.AvgPool2d(kernel_size=2),
None])
self.lastdense = nn.Linear(64 * 4 * (PATCH_SHAPE[0] // 4) * (PATCH_SHAPE[1] // 4), 1, bias=False)
def do_layernorm(self, tensor, lnname):
tensor = tensor.permute(0, 2, 3, 1).contiguous()
tensor = lnname(tensor)
tensor = tensor.permute(0, 3, 1, 2).contiguous()
return tensor
def forward(self, inputdata):
for n in range(3):
inputdata = F.relu(self.convs[n](inputdata))
inputdata = self.do_layernorm(inputdata, self.lns2[n])
inputdata = inputdata + F.relu(self.convs2[n](inputdata))
inputdata = self.do_layernorm(inputdata, self.lns[n])
if self.pools[n] is not None:
inputdata = self.pools[n](inputdata)
#print(inputdata.shape)
inputdata = inputdata.view(inputdata.size(0), -1)
inputdata = self.lastdense(inputdata)
inputdata = inputdata.squeeze(1)
return inputdata
fakeimg = FakeImg().to(device)
d = Discriminator().to(device)
optimizer_d = optim.Adam(d.parameters(), lr=LEARNING_RATE_D, amsgrad=True)
optimizer_g = optim.Adam(fakeimg.parameters(), lr=LEARNING_RATE_G, amsgrad=True)
iters = 0
def do_thing_D():
with torch.no_grad():
fi = fakeimg()
ri = realimg()
fakes = d(fi)
reals = d(ri)
reals = reals.unsqueeze(0)
fakes = fakes.unsqueeze(1)
return fakes - reals
def train_D():
# train discriminator
optimizer_d.zero_grad()
#with torch.autocast(device_type="cuda", enabled=True):
loss = F.softplus(do_thing_D())
loss.mean().backward()
optimizer_d.step()
def do_thing_G():
with torch.no_grad():
ri = realimg()
fakes = d(fakeimg())
reals = d(ri)
reals = reals.unsqueeze(0)
fakes = fakes.unsqueeze(1)
return reals - fakes
def train_G():
# train generator
optimizer_g.zero_grad()
#with torch.autocast(device_type="cuda", enabled=True):
loss = F.relu(do_thing_G())
loss.mean().backward()
optimizer_g.step()
if TORCH_COMPILE:
train_D_opt = torch.compile(train_D)
train_G_opt = torch.compile(train_G)
else:
train_D_opt = train_D
train_G_opt = train_G
try:
currtime = time.time()
curriters = 0
while 1:
iters += 1
curriters += 1
train_D_opt()
if iters >= 64:
train_G_opt()
if (time.time() - currtime) * 1000.0 > PRINT_TIME:
delta = time.time() - currtime
print(f"#{iters}, {delta * 1000.0 / curriters} ms/iter")
currtime = time.time()
curriters = 0
if iters % SAVE_INTERVAL == 0:
img = (fakeimg.img.squeeze(0) + 1.0) * 127.5
img = torch.clamp(img, 0.0, 255.0).to("cpu")
img = img.byte()
if IS_COLAB:
io.write_png(img, f"/content/gdrive/My Drive/texgen/{IMGNAME}_gen{iters}.png")
else:
outpath: Path = Path(f"outputs/{IMGNAME}_gen{iters}.png")
os.makedirs(outpath.parent, exist_ok=True)
io.write_png(img, str(outpath))
except KeyboardInterrupt:
print("Run aborted by user")