Skip to content

Latest commit

 

History

History
49 lines (39 loc) · 2.36 KB

File metadata and controls

49 lines (39 loc) · 2.36 KB

COCO benchmark

Here you can find predictions for COCO validation from different freely available pretrained object detection models:

Model COCO validation mAP(0.5...0.95) COCO validation mAP(0.5...0.95) Mirror
EffNet-B0 33.6 33.5
EffNet-B1 39.2 39.2
EffNet-B2 42.5 42.6
EffNet-B3 45.9 45.5
EffNet-B4 49.0 48.8
EffNet-B5 50.5 50.2
EffNet-B6 51.3 51.1
EffNet-B7 52.1 51.9
DetectoRS + ResNeXt-101 51.5 51.5
DetectoRS + Resnet50 49.6 49.6
Yolo v5x 50.0 ---

Benchmark files

Download ~299 MB

Ensemble results

There is python code to get high score on COCO validation using WBF method: run_benchmark_coco.py

WBF with weights: [0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5, 5, 7, 7, 9, 9, 8, 8, 5, 5, 10] and IoU = 0.7 gives 56.1 on COCO validation and 56.4 on COCO test-dev.

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.561
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.741
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.621
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.402
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.607
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.704
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.405
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.684
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.755
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.629
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.794
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.878

Requirements

numpy, pandas, pycocotools