-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathChange_Detection.R
35 lines (32 loc) · 1.03 KB
/
Change_Detection.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# load Sample well data
df <- read.csv(file = 'Sample_Well.csv', header=TRUE)
df$Date <-as.Date(df$Date, format = "%m/%d/%Y")
df.index <- df$Date
head(df)
# convert data to time series
oil_ts <- ts(data=df[,2], frequency=12)
oil_ts
# Change points library
library(EnvCpt)
x <- as.integer()
# define models to be used to find Change points
models <- c("trendar1cpt", "trendar2cpt")
# Find Change points & Limit Minimum Period length to 5% of Well History
out <- envcpt(oil_ts, verbose=0, models=models, minseglen=as.integer(0.05*length(df.index),0))
# Note you can change Min length as needed
AIC(out)
plot(out, type="fit")
# find minimum AIC model
optimal_model <- which.min(AIC(out))
optimal_model <- names(optimal_model[1])
optimal_model
# Find change points in model
change_points <- cpts(out[[optimal_model]])
change_points
# plot results
plot(df, log='y')
grid(nx = NULL, ny = NULL,
lty = 2, # Grid line type
col = "gray", # Grid line color
lwd = 1) # Grid line width
abline(v = df$Date[change_points], col="red", lwd=2)