-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_models.py
executable file
·341 lines (270 loc) · 14.6 KB
/
train_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""
Generic training script that trains a model using a given dataset.
This code modifies the "TensorFlow-Slim image classification model library",
Please visit https://github.com/tensorflow/models/tree/master/research/slim
for more detailed usage.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import os
import numpy as np
from datasets import dataset_factory
from deployment import model_deploy
from nets import nets_factory
from preprocessing import preprocessing_factory
from modules import *
from configuration import *
slim = tf.contrib.slim
FLAGS = tf.app.flags.FLAGS
def _average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
# print(g)
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def _tower_loss(network_fn, images, labels, input_seqs, input_masks):
"""Calculate the total loss on a single tower running the model."""
# Get image features, text features, and joint embeddings
image_features, _ = build_image_features(network_fn, images)
text_features, _ = build_text_features(input_seqs, input_masks)
image_embeddings = build_joint_embeddings(image_features, scope='image_joint_embedding')
text_embeddings = build_joint_embeddings(text_features, scope='text_joint_embedding')
loss, cmpm_loss, cmpc_loss, i2t_loss, t2i_loss = 0.0, 0.0, 0.0, 0.0, 0.0
cmpm_loss = tf.cast(cmpm_loss, tf.float32)
cmpc_loss = tf.cast(cmpc_loss, tf.float32)
i2t_loss = tf.cast(i2t_loss, tf.float32)
t2i_loss = tf.cast(t2i_loss, tf.float32)
# CMPM loss
if FLAGS.CMPM:
i2t_loss, t2i_loss, pos_avg_dist, neg_avg_dist = \
cmpm_loss_compute(text_embeddings, image_embeddings, labels)
cmpm_loss = i2t_loss + t2i_loss
tf.summary.scalar('cmpm_i2t_loss', i2t_loss)
tf.summary.scalar('cmpm_t2i_loss', t2i_loss)
tf.summary.scalar('cmpm_loss', cmpm_loss)
tf.summary.scalar('pos_avg_dist', pos_avg_dist)
tf.summary.scalar('neg_avg_dist', neg_avg_dist)
# CMPC loss
if FLAGS.CMPC:
ipt_loss, tpi_loss, image_precision, text_precision = \
cmpc_loss_compute(text_embeddings, image_embeddings, labels)
cmpc_loss = ipt_loss + tpi_loss
tf.summary.scalar('cmpc_ipt_loss', ipt_loss)
tf.summary.scalar('cmpc_tpi_loss', tpi_loss)
tf.summary.scalar('cmpc_loss', cmpc_loss)
tf.summary.scalar('image_precision', image_precision)
tf.summary.scalar('text_precision', text_precision)
loss = cmpc_loss + cmpm_loss
reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n([loss] + reg_loss, name='total_loss')
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg_loss')
loss_averages_op = loss_averages.apply([loss] + [total_loss])
tf.summary.scalar('loss_raw', loss)
tf.summary.scalar('loss_avg', loss_averages.average(loss))
with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss, cmpm_loss, cmpc_loss, i2t_loss, t2i_loss
def train():
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
#######################
# Config model_deploy #
#######################
deploy_config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.worker_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
# Create global_step
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step()
######################
# Select the dataset #
######################
dataset = dataset_factory.get_dataset(
FLAGS.dataset_name, FLAGS.split_name, FLAGS.dataset_dir)
###########################
# Select the CNN network #
###########################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=None,
weight_decay=FLAGS.weight_decay,
is_training=True)
#########################################
# Configure the optimization procedure. #
#########################################
with tf.device(deploy_config.optimizer_device()):
learning_rate = configure_learning_rate(dataset.num_samples, global_step)
optimizer = configure_optimizer(learning_rate)
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = FLAGS.preprocessing_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=True)
##############################################################
# Create a dataset provider that loads data from the dataset #
##############################################################
with tf.device(deploy_config.inputs_device()):
examples_per_shard = 1024
min_queue_examples = examples_per_shard * FLAGS.input_queue_memory_factor
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
num_readers=FLAGS.num_readers,
common_queue_capacity=min_queue_examples + 3 * FLAGS.batch_size,
common_queue_min=min_queue_examples)
[image, label, text_id, text] = provider.get(['image', 'label', 'caption_ids', 'caption'])
train_image_size = network_fn.default_image_size
image = image_preprocessing_fn(image, train_image_size, train_image_size)
# This function splits the text into an input sequence and a target sequence,
# where the target sequence is the input sequence right-shifted by 1. Input and
# target sequences are batched and padded up to the maximum length of sequences
# in the batch. A mask is created to distinguish real words from padding words.
# Note that the target sequence is used if performing caption generation
seq_length = tf.shape(text_id)[0]
input_length = tf.expand_dims(tf.subtract(seq_length, 1), 0)
input_seq = tf.slice(text_id, [0], input_length)
target_seq = tf.slice(text_id, [1], input_length)
input_mask = tf.ones(input_length, dtype=tf.int32)
images, labels, input_seqs, target_seqs, input_masks, texts, text_ids = tf.train.batch(
[image, label, input_seq, target_seq, input_mask, text, text_id],
batch_size=FLAGS.batch_size,
capacity=2 * FLAGS.num_preprocessing_threads * FLAGS.batch_size,
dynamic_pad=True,
name="batch_and_pad")
batch_queue = slim.prefetch_queue.prefetch_queue(
[images, labels, input_seqs, target_seqs, input_masks, texts, text_ids],
capacity=16 * deploy_config.num_clones,
num_threads=FLAGS.num_preprocessing_threads,
dynamic_pad=True,
name="perfetch_and_pad")
images, labels, input_seqs, target_seqs, input_masks, texts, text_ids = batch_queue.dequeue()
images_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=images)
labels_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=labels)
input_seqs_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=input_seqs)
target_seqs_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=target_seqs)
input_masks_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=input_masks)
texts_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=texts)
text_ids_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=text_ids)
tower_grads = []
for k in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % k):
with tf.name_scope('tower_%d' % k) as scope:
with tf.variable_scope(tf.get_variable_scope()):
loss, cmpm_loss, cmpc_loss, i2t_loss, t2i_loss = \
_tower_loss(network_fn, images_splits[k], labels_splits[k],
input_seqs_splits[k], input_masks_splits[k])
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=scope)
# Variables to train.
variables_to_train = get_variables_to_train()
grads = optimizer.compute_gradients(loss, var_list=variables_to_train)
tower_grads.append(grads)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = _average_gradients(tower_grads)
# Add a summary to track the learning rate and precision.
summaries.append(tf.summary.scalar('learning_rate', learning_rate))
# Add histograms for histogram and trainable variables.
for grad, var in grads:
if grad is not None:
summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))
for var in tf.trainable_variables():
summaries.append(tf.summary.histogram(var.op.name, var))
#################################
# Configure the moving averages #
#################################
if FLAGS.moving_average_decay:
moving_average_variables = slim.get_model_variables()
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
update_ops.append(variable_averages.apply(moving_average_variables))
# Apply the gradients to adjust the shared variables.
grad_updates = optimizer.apply_gradients(grads, global_step=global_step)
update_ops.append(grad_updates)
# Group all updates to into a single train op.
train_op = tf.group(*update_ops)
# Create a saver.
saver = tf.train.Saver(tf.global_variables())
# Build the summary operation from the last tower summaries.
summary_op = tf.summary.merge(summaries)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU implementations.
config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=config)
sess.run(init)
ck_global_step = get_init_fn(sess)
print_train_info()
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(
os.path.join(FLAGS.log_dir),
graph=sess.graph)
num_steps_per_epoch = int(dataset.num_samples / FLAGS.batch_size)
max_number_of_steps = FLAGS.num_epochs * num_steps_per_epoch
for step in xrange(max_number_of_steps):
step += int(ck_global_step)
# check the training data
# simages, slabels, sinput_seqs, starget_seqs, sinput_masks, stexts, stext_ids = \
# sess.run([images_splits[0], labels_splits[0], input_seqs_splits[0], target_seqs_splits[0],
# input_masks_splits[0], texts_splits[0], text_ids_splits[0]])
# save_images(simages[:8], [1, 8], './{}/{:05d}.png'.format(FLAGS.train_samples_dir, step))
# import pdb
# pdb.set_trace()
_, total_loss_value, cmpm_loss_value, cmpc_loss_value, i2t_loss_value, t2i_loss_value = \
sess.run([train_op, loss, cmpm_loss, cmpc_loss, i2t_loss, t2i_loss])
assert not np.isnan(cmpm_loss_value), 'Model diverged with cmpm_loss = NaN'
assert not np.isnan(cmpc_loss_value), 'Model diverged with cmpc_loss = NaN'
assert not np.isnan(total_loss_value), 'Model diverged with total_loss = NaN'
if step % 10 == 0:
format_str = ('%s: step %d, cmpm_loss = %.2f, cmpc_loss = %.2f, '
'i2t_loss = %.2f, t2i_loss = %.2f')
print(format_str % (FLAGS.dataset_name, step, cmpm_loss_value, cmpc_loss_value,
i2t_loss_value, t2i_loss_value))
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)
# Save the model checkpoint periodically.
if step % FLAGS.ckpt_steps == 0 or (step + 1) == max_number_of_steps:
checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)