-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainGrasp_full.py
executable file
·625 lines (523 loc) · 22.9 KB
/
trainGrasp_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
#!/usr/bin/env python3
import os
import sys
import warnings
from collections import OrderedDict
from datetime import datetime
from config.base_config import cfg_from_file
from dataset import custom_dset
from dataset.dataloader.base_dset import BaseLoader
warnings.filterwarnings("ignore")
import torch
from torch import tensor
import torch.nn.functional as F
from torch.autograd import Variable
print("device: ", torch.cuda.current_device())
import time
import numpy as np
from numpy import array
import visdom
import json
import random
import matplotlib.pyplot as plt
import wandb
from src.nn_grasp_siamese_full import SiameseEncoder, SiamesePolicyNet
from src.grasp_rollout_env_a_1 import GraspRolloutEnv
from dataset.datasetABCGrasp import train_dataset, test_dataset
curr_dir = os.getcwd()
class InferGrasp_BC:
def __init__(self, json_file_name, weightfile):
# Configure from JSON file
self.json_file_name = json_file_name
with open(json_file_name + '.json') as json_file:
self.json_data = json.load(json_file)
config_dic, ent_dic, loss_dic, self.optim_dic = [value for key, value in self.json_data.items()]
self.N = config_dic['N']
self.num_cpus = config_dic['num_cpus']
self.checkPalmContact = config_dic['checkPalmContact']
self.useLongFinger = config_dic['useLongFinger']
self.numTest = config_dic['numTest']
numTrainTrials = config_dic['numTrainTrials']
numTestTrials = config_dic['numTestTrials']
z_conv_dim = ent_dic['z_conv_dim']
z_mlp_dim = ent_dic['z_mlp_dim']
self.z_total_dim = z_mlp_dim
# Set up seeding
self.seed = 0
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
# Use GPU for BC
device = 'cpu'
# device = torch.device("cuda:0")
device = torch.device("cpu")
# Set up networks, calculate number of params
self.encoder = SiameseEncoder(out_cnn_dim=ent_dic['encoder_out_cnn_dim'],
dim_mlp_append=config_dic['actionDim'] + config_dic['stateDim'],
z_total_dim=self.z_total_dim,
img_size=192,
device=device).to(device)
self.actor = SiamesePolicyNet(input_num_chann=1,
dim_mlp_append=0,
num_mlp_output=config_dic['actionDim'],
out_cnn_dim=ent_dic['actor_out_cnn_dim'],
z_conv_dim=z_conv_dim,
z_mlp_dim=z_mlp_dim).to(device)
# The training used dataParallel so loading weights in a special way
# https://discuss.pytorch.org/t/solved-keyerror-unexpected-key-module-encoder-embedding-weight-in-state-dict/1686/3
# original saved file with DataParallel
state_dict = torch.load(weightfile['encoder'])#, map_location=torch.device('cpu'))
# create new OrderedDict that does not contain `module.`
# new_state_dict = OrderedDict()
# for k, v in state_dict.items():
# name = k[7:] # remove `module.`
# new_state_dict[name] = v
# # load params
# self.encoder.load_state_dict(new_state_dict)
self.encoder.load_state_dict(state_dict)
self.encoder.eval()
state_dict = torch.load(weightfile['actor'])#, map_location=torch.device('cpu'))
self.actor.load_state_dict(state_dict)
self.actor.eval()
self.seen_obj_ind_list = [28, 2035, 2041, 2348, 2530, 2583, 2087, 2901, 180, 2445, 2037, 2041, 2044, 2141, 2559, 2583, 2077, 2059, 2032, 2050, 2530, 2583, 2035, 2036] #np.arange(1000,1000+60)
self.unseen_obj_ind_list = [28, 2035, 2041, 2348, 2530, 2583, 2087, 2901, 180, 2445, 2037, 2041, 2044, 2141, 2559, 2583, 2077, 2059, 2032, 2050, 2530, 2583, 2035, 2036]#np.arange(1000-20,1000)
self.xy_range = 0.0
self.obj_folder = config_dic['obj_folder']
def infer(self, path):
# Initialize rollout env
rollout_env = GraspRolloutEnv(
encoder=self.encoder.to('cpu'),
actor=self.actor.to('cpu'),
z_total_dim=self.z_total_dim,
num_cpus=self.num_cpus,
checkPalmContact=self.checkPalmContact,
useLongFinger=self.useLongFinger,
resz=(192, 192))
# Get seen object configuration
objPos, objOrn, objPathInd, objPathList = self.get_object_config \
(numTrials=self.numTest,
obj_ind_list=self.seen_obj_ind_list)
zs_all = torch.normal(mean=0, std=1,
size=(self.numTest, self.z_total_dim))
# Run a trial with GUI, debug, save a latent interp figure
zs_single = torch.normal(mean=0, std=1,
size=(1, self.z_total_dim))
success = rollout_env.single(
zs=zs_single,
objPos=[0.65, -0.04, 0.32],
objOrn=[0., 0., 0.8],
objPath=random.choice(objPathList), # self.obj_folder+'2559.urdf',
gui=False,
save_figure=True,
figure_path=path + str(0) + '_z_interp')
def get_object_config(self, numTrials, obj_ind_list):
obj_x = np.random.uniform(low=0.65-self.xy_range,
high=0.65+self.xy_range,
size=(numTrials, 1))
obj_y = np.random.uniform(low=-0.04-self.xy_range,
high=-0.04+self.xy_range,
size=(numTrials, 1))
obj_yaw = 0.8 * np.ones((numTrials, 1))
objPos = np.hstack((obj_x, obj_y, 0.32*np.ones((numTrials, 1))))
objOrn = np.hstack((np.zeros((numTrials, 2)), obj_yaw))
objPathInd = np.random.randint(low=0, high=len(obj_ind_list), size=numTrials) # use random ini cond for BC
objPathList = []
for obj_ind in obj_ind_list:
objPathList += [self.obj_folder + str(obj_ind) + '.urdf']
return (objPos, objOrn, objPathInd, objPathList)
class TrainGrasp_BC:
def __init__(self, json_file_name):
# Configure from JSON file
self.json_file_name = json_file_name
with open(json_file_name+'.json') as json_file:
self.json_data = json.load(json_file)
config_dic, ent_dic, loss_dic, self.optim_dic = [value for key, value in self.json_data.items()]
self.N = config_dic['N']
self.num_cpus = config_dic['num_cpus']
self.checkPalmContact = config_dic['checkPalmContact']
self.useLongFinger = config_dic['useLongFinger']
self.numTest = config_dic['numTest']
numTrainTrials = config_dic['numTrainTrials']
numTestTrials = config_dic['numTestTrials']
z_conv_dim = ent_dic['z_conv_dim']
z_mlp_dim = ent_dic['z_mlp_dim']
self.z_total_dim = z_mlp_dim
# Set up seeding
self.seed = 0
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
# Use GPU for BC
device = 'cuda:0'
self.device = device
self.tripleCriterion = torch.nn.MarginRankingLoss(margin=optim_dic["tripleLoss_margin"])
# Sample trials
trainTrialsList = np.arange(0, numTrainTrials)
testTrialsList = np.arange(numTrainTrials, numTrainTrials+numTestTrials)
numTrain = len(trainTrialsList)-len(trainTrialsList)%self.N
numTest = len(testTrialsList)-len(testTrialsList)%self.N
print('Num of train trials: ', numTrain)
print('Num of test trials: ', numTest)
# Config object index for success test trials
self.obj_folder = config_dic['obj_folder']
self.xy_range = 0.0
self.seen_obj_ind_list = [28, 2035, 2041, 2348, 2530, 2583, 2087, 2901, 180, 2445, 2037, 2041, 2044, 2141, 2559, 2583, 2077, 2059, 2032, 2050, 2530, 2583, 2035, 2036] #np.arange(1000,1000+60)
self.unseen_obj_ind_list = [28, 2035, 2041, 2348, 2530, 2583, 2087, 2901, 180, 2445, 2037, 2041, 2044, 2141, 2559, 2583, 2077, 2059, 2032, 2050, 2530, 2583, 2035, 2036]#np.arange(1000-20,1000)
# Body-graspable mug IDs: [28, 2035, 2041, 2348, 2530, 2583, 2087, 2901]
# Handle_left_right_sides-graspable mug IDs: [28, 180, 2445, 2037, 2041, 2044, 2141, 2559, 2583, 2077]
# Handle_front_back_sides-graspable mug IDs: [28, 2059, 2032, 2050, 2530, 2583, 2087, 2035, 2036, 2077]
train_triplets = []
test_triplets = []
# Create dataholder
dset_obj = custom_dset.Custom()
dset_obj.load(config_dic['trainFolderDir'])
for i in range(2500):
pos_anchor_img, pos_img, neg_img = dset_obj.getTriplet()
train_triplets.append([pos_anchor_img, pos_img, neg_img])
for i in range(self.numTest):
pos_anchor_img, pos_img, neg_img = dset_obj.getTriplet(split='test')
test_triplets.append([pos_anchor_img, pos_img, neg_img])
loader = BaseLoader
self.train_dataloader = torch.utils.data.DataLoader(
loader(train_triplets, resz=(192, 192)),
batch_size=self.N,
shuffle=True,
drop_last=True,
pin_memory=True,
num_workers=5)
self.test_dataloader = torch.utils.data.DataLoader(
loader(test_triplets, resz=(192, 192)),
batch_size=self.N,
shuffle=False,
drop_last=True,
pin_memory=True,
num_workers=5) # assume small test size, single batch
# Set up networks, calculate number of params
self.encoder = SiameseEncoder(out_cnn_dim=ent_dic['encoder_out_cnn_dim'],
dim_mlp_append=config_dic['actionDim']+config_dic['stateDim'],
z_total_dim=self.z_total_dim,
img_size=192,
device=device).to(device)
self.actor = SiamesePolicyNet(input_num_chann=1,
dim_mlp_append=config_dic['stateDim'],
num_mlp_output=config_dic['actionDim'],
out_cnn_dim=ent_dic['actor_out_cnn_dim'],
z_conv_dim=z_conv_dim,
z_mlp_dim=z_mlp_dim,
img_size=192,).to(device)
print('Num of actor parameters: %d' % sum(p.numel() for p in self.actor.parameters() if p.requires_grad))
print('Num of encoder parameters: %d' % sum(p.numel() for p in self.encoder.parameters() if p.requires_grad))
# Set up optimizer
self.optimizer = torch.optim.AdamW([
{'params': self.actor.parameters(),
'lr': optim_dic['actor_lr'],
'weight_decay': optim_dic['actor_weight_decay']},
{'params': self.encoder.parameters(),
'lr': optim_dic['encoder_lr'],
'weight_decay': optim_dic['encoder_weight_decay']}
])
if optim_dic['decayLR']['use']:
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=optim_dic['decayLR']['milestones'],
gamma=optim_dic['decayLR']['gamma'])
def get_object_config(self, numTrials, obj_ind_list):
obj_x = np.random.uniform(low=0.65-self.xy_range,
high=0.65+self.xy_range,
size=(numTrials, 1))
obj_y = np.random.uniform(low=-0.04-self.xy_range,
high=-0.04+self.xy_range,
size=(numTrials, 1))
obj_yaw = 0.8*np.ones((numTrials, 1))
objPos = np.hstack((obj_x, obj_y, 0.32*np.ones((numTrials, 1))))
objOrn = np.hstack((np.zeros((numTrials, 2)), obj_yaw))
objPathInd = np.random.randint(low=0, high=len(obj_ind_list), size=numTrials) # use random ini cond for BC
objPathList = []
for obj_ind in obj_ind_list:
objPathList += [self.obj_folder + str(obj_ind) + '.urdf']
return (objPos, objOrn, objPathInd, objPathList)
def forward(self, data_batch):
# Set up loss functions
mse = torch.nn.MSELoss(reduction="mean")
l1 = torch.nn.L1Loss(reduction="mean")
# Extract data from batch
(traj1_depth, traj2_depth, traj3_depth, traj1_states, traj2_states, traj3_states, traj1_actions, traj2_actions, traj3_actions) = data_batch
traj1_depth, traj2_depth, traj3_depth, traj1_states, traj2_states, traj3_states, traj1_actions, traj2_actions, traj3_actions = traj1_depth.to(self.device), traj2_depth.to(self.device), traj3_depth.to(self.device), traj1_states.to(self.device), traj2_states.to(self.device), traj3_states.to(self.device), traj1_actions.to(self.device), traj2_actions.to(self.device), traj3_actions.to(self.device)
triple_loss_total = tensor(0.0, requires_grad=True).to(self.device)
trans_l1_loss_total = tensor(0.0, requires_grad=True).to(self.device)
trans_l2_loss_total = tensor(0.0, requires_grad=True).to(self.device)
for trialInd in range(self.N): # each trial in the batch is a trajectory
anchor_trial = [traj1_depth[trialInd], traj1_states[trialInd], traj1_actions[trialInd]]
pos_trial = [traj2_depth[trialInd], traj2_states[trialInd], traj2_actions[trialInd]]
neg_trial = [traj3_depth[trialInd], traj3_states[trialInd], traj3_actions[trialInd]]
# torch.onnx.export(self.encoder, args=(anchor_trial, pos_trial, neg_trial), f="encoder.onnx", verbose=True, input_names=["anchor", "pos", "neg"],
# output_names=["siamese_emb", "conv_img_affordance_feature"])
E1, E2, E3, A1, A2, A3, featAff1, featAff2, featAff3 = self.encoder(anchor_trial, pos_trial, neg_trial)
# E: T Steps of Observation Embeddings for a trajectory;
# A: A sequence of affordance embeddings for an interaction segment of a trajectory
# featAff: T steps of predicted affordance cues for a trajectory
A1, A2, A3 = torch.unsqueeze(A1[-1], 0), torch.unsqueeze(A2[-1], 0), torch.unsqueeze(A3[-1], 0)
# We take the last-step embedding in the sequence of affordance embeddings which encodes the whole interaction segment
dist_A1_A2 = F.pairwise_distance(A1, A2, 2)
dist_A1_A3 = F.pairwise_distance(A1, A3, 2)
dist_E1_A2 = F.pairwise_distance(E1, A2, 2)
dist_E1_A3 = F.pairwise_distance(E1, A3, 2)
target_1 = torch.FloatTensor(dist_A1_A2.size()).fill_(-1)
target_2 = torch.FloatTensor(dist_E1_A2.size()).fill_(-1)
target_1 = target_1.to(self.device)
target_1 = Variable(target_1)
target_2 = target_2.to(self.device)
target_2 = Variable(target_2)
# The following 3 lines forms a Coupled Triplet Loss (the Equation 4 in our paper)
triplet_loss_1 = self.tripleCriterion(dist_A1_A2, dist_A1_A3, target_1)
triplet_loss_2 = self.tripleCriterion(dist_E1_A2, dist_E1_A3, target_2)
triplet_loss = torch.div((triplet_loss_1 + triplet_loss_2), 2)
# torch.onnx.export(self.actor, args=(A1[:-1], z_skill_1[:-1], anchor_trial[1][:-1]), f="actor.onnx", verbose=True,
# input_names=["convX_afford", "zs", "states"],
# output_names=["actions"])
# BC Losses
pred_anchor = self.actor(featAff1[:-1], E1[:-1], anchor_trial[1][:-1])
pred_pos = self.actor(featAff2[:-1], E2[:-1], pos_trial[1][:-1])
pred_neg = self.actor(featAff3[:-1], E3[:-1], neg_trial[1][:-1])
# Trans and Rot losses
trans_l2_loss = mse(pred_anchor, anchor_trial[2][1:]) + mse(pred_pos, pos_trial[2][1:]) + mse(pred_neg, neg_trial[2][1:])
trans_l1_loss = l1(pred_anchor, anchor_trial[2][1:]) + l1(pred_pos, pos_trial[2][1:]) + l1(pred_neg, neg_trial[2][1:])
triple_loss_total += triplet_loss
trans_l1_loss_total += trans_l1_loss
trans_l2_loss_total += trans_l2_loss
T = traj1_states.shape[1]
triple_loss_total /= self.N
trans_l1_loss_total /= self.N
trans_l2_loss_total /= self.N
# I found using the following instead of X_loss_total gives more meaningful affordance cues
return triplet_loss, trans_l2_loss, trans_l1_loss
def run(self, loss_dic, train=True):
# To be divided by batch size
epoch_loss = 0
epoch_trans_loss = 0
epoch_siamese_loss = 0
num_batch = 0
# Switch NN mode
if train:
self.encoder.train()
self.actor.train()
data_loader = self.train_dataloader
else:
self.encoder.eval()
self.actor.eval()
data_loader = self.test_dataloader
# Run all batches
for _, data_batch in enumerate(data_loader):
# Forward pass to get loss
siamese_loss, trans_l2_loss, trans_l1_loss = self.forward(data_batch)
# Get training loss
train_loss = loss_dic['trans_l2_loss_ratio']*trans_l2_loss + \
loss_dic['triplet_loss_ratio']*siamese_loss + \
trans_l1_loss
if train:
# zero gradients, perform a backward pass to get gradients
self.optimizer.zero_grad()
train_loss.backward()
# Clip gradient if specified
if loss_dic['gradientClip']['use']:
torch.nn.utils.clip_grad_norm_(self.actor.parameters(), loss_dic['gradientClip']['thres'])
# Update weights using gradient
self.optimizer.step()
# Store loss
epoch_loss += train_loss.item()
epoch_trans_loss += trans_l1_loss.item()
epoch_siamese_loss += siamese_loss.item()
num_batch += 1
# Decay learning rate if specified
if train and self.optim_dic['decayLR']['use']:
self.scheduler.step()
# Get batch average loss
epoch_loss /= num_batch
epoch_trans_loss /= num_batch
epoch_siamese_loss /= num_batch
return epoch_loss, epoch_trans_loss, epoch_siamese_loss
def test_success(self, epoch, path):
# Initialize rollout env
rollout_env = GraspRolloutEnv(
encoder=self.encoder.to('cpu'),
actor=self.actor.to('cpu'),
z_total_dim=self.z_total_dim,
num_cpus=self.num_cpus,
checkPalmContact=self.checkPalmContact,
useLongFinger=self.useLongFinger,
resz=(192, 192))
s_result_path = result_path + 'seen_epoch_' + str(epoch) # Result path for evaluating seen objects
us_result_path = result_path + 'unseen_epoch_' + str(epoch) # Result path for evaluating unseen objects
# Get seen object configuration
objPos, objOrn, objPathInd, objPathList = self.get_object_config \
(numTrials=self.numTest,
obj_ind_list=self.seen_obj_ind_list)
zs_all = torch.normal(mean=0, std=1,
size=(self.numTest, self.z_total_dim))
success_list = rollout_env.parallel(
zs_all=zs_all,
objPos=objPos,
objOrn=objOrn,
objPathInd=objPathInd,
objPathList=objPathList,
figure_path=s_result_path)
avg_success_seen = np.mean(array(success_list))
# Get unseen object configuration
objPos, objOrn, objPathInd, objPathList = self.get_object_config \
(numTrials=self.numTest,
obj_ind_list=self.unseen_obj_ind_list)
zs_all = torch.normal(mean=0,
std=1,
size=(self.numTest, self.z_total_dim))
success_list = rollout_env.parallel(
zs_all=zs_all,
objPos=objPos,
objOrn=objOrn,
objPathInd=objPathInd,
objPathList=objPathList,
figure_path=us_result_path)
avg_success_unseen = np.mean(array(success_list))
# Move model back to GPU for training
self.encoder.to('cuda:0')
self.actor.to('cuda:0')
return avg_success_seen, avg_success_unseen
def save_model(self, epoch, path):
torch.save(self.encoder.state_dict(),
path + str(epoch) + '_encoder.pt')
torch.save(self.actor.state_dict(),
path+str(epoch)+'_actor.pt')
if __name__ == '__main__':
cfg_from_file("config/test.yaml")
# Read JSON config
json_file_name = curr_dir + '/' + sys.argv[1]
with open(json_file_name+'.json') as json_file:
json_data = json.load(json_file)
config_dic, ent_dic, loss_dic, optim_dic = [value for key, value in json_data.items()]
numEpochs = config_dic['numEpochs']
# Create a new subfolder under result
result_path = '/data/Yantian/affordance_IL/result/'+datetime.now().strftime("%Y%m%d-%H%M%S")+'/'
if not os.path.exists(result_path):
os.umask(0)
os.makedirs(result_path)
os.makedirs(result_path+'figure/')
# Create a new subfolder under model
model_path = '/data/Yantian/affordance_IL/model/'+datetime.now().strftime("%Y%m%d-%H%M%S")+'/'
if not os.path.exists(model_path):
os.umask(0)
os.makedirs(model_path)
# Inferer = InferGrasp_BC(json_file_name=json_file_name, weightfile={'encoder': 'model/home/yz/Research/Affordance-Discovery-Imitation/src/grasp_bc_13_a/5_encoder.pt', 'actor': 'model/home/yz/Research/Affordance-Discovery-Imitation/src/grasp_bc_13_a/5_actor.pt'})
# Inferer.infer(result_path)
# Initialize trianing env
trainer = TrainGrasp_BC(json_file_name=json_file_name)
if config_dic['wandb']:
wandb.init(project="affordance-discovery-LfD")
for hyper_params in [config_dic, ent_dic, loss_dic, optim_dic]:
wandb.config.update(hyper_params)
wandb.watch([trainer.actor, trainer.encoder], log="parameters")
if config_dic['visdom']:
vis = visdom.Visdom(env='grasp')
trans_loss_window = vis.line(
X=array([[0, 0]]),
Y=array([[0, 0]]),
opts=dict(xlabel='epoch',
ylabel='Loss',
title='Trans L1, '+json_file_name,
legend=['Train Loss', 'Test Loss']))
rot_loss_window = vis.line(
X=array([[0, 0]]),
Y=array([[0, 0]]),
opts=dict(xlabel='epoch',
ylabel='Loss',
title='Rot L2, '+json_file_name,
legend=['Train Loss', 'Test Loss']))
accuracy_window = vis.line(
X=array([[0, 0]]),
Y=array([[0, 0]]),
opts=dict(xlabel='epoch',
ylabel='Loss',
title='Test success rates, '+json_file_name,
legend=['Seen', 'Unseen']))
# Training details to be recorded
train_loss_list = []
test_loss_list = []
train_trans_loss_list = []
test_trans_loss_list = []
train_rot_loss_list = []
test_siamese_loss_list = []
test_seen_accuracy_list = []
test_unseen_accuracy_list = []
# Record best success rate on unseen model, to decide if save model
best_unseen = 0
# Train
for epoch in range(numEpochs):
epoch_start_time = time.time()
# Run one pass of training
epoch_loss, epoch_trans_loss, epoch_siamese_loss = trainer.run(loss_dic=loss_dic)
train_loss_list += [epoch_loss]
train_trans_loss_list += [epoch_trans_loss]
train_rot_loss_list += [epoch_siamese_loss]
print('Epoch: %d, loss: %f, Trans: %.4f, siamese: %.4f' % (epoch, epoch_loss, epoch_trans_loss, epoch_siamese_loss))
if config_dic['wandb']:
wandb.log(
{
"train_loss": epoch_loss,
"train_trans_loss": epoch_trans_loss,
"train_rot_loss": epoch_siamese_loss,
}, step=epoch
)
# Test sample trials
with torch.no_grad():
if epoch % 10 == 0:# and epoch > 0:
epoch_loss, epoch_trans_loss, epoch_siamese_loss = trainer.run(loss_dic=loss_dic, train=False)
test_loss_list += [epoch_loss]
test_trans_loss_list += [epoch_trans_loss]
test_siamese_loss_list += [epoch_siamese_loss]
print('Test, loss: %f, trans: %.4f, siamese: %.4f' % (epoch_loss, epoch_trans_loss, epoch_siamese_loss))
if config_dic['wandb']:
wandb.log(
{
"test_loss": epoch_loss,
"test_trans_loss": epoch_trans_loss,
"test_siamese_loss": epoch_siamese_loss,
}, step=epoch
)
print('This epoch took: %.2f\n' % (time.time()-epoch_start_time))
# Test success rate every 50 epochs
with torch.no_grad():
if (epoch % 10 == 0 or epoch == numEpochs-1) and epoch > 0:
sim_start_time = time.time()
avg_success_seen, avg_success_unseen = trainer.test_success(epoch=epoch,
path=result_path+'figure/')
print('Time took to sim:', time.time() - sim_start_time)
print('Avg seen/unseen success rate:', avg_success_seen, avg_success_unseen)
test_seen_accuracy_list += [avg_success_seen]
test_unseen_accuracy_list += [avg_success_unseen]
print("All seen success rates: ", test_seen_accuracy_list)
print("All unseen success rates: ", test_unseen_accuracy_list)
if config_dic['wandb']:
wandb.log(
{
"test_seen_accuracy": avg_success_seen,
"test_unseen_accuracy": avg_success_unseen,
}, step=epoch
)
# Save model
if avg_success_unseen > best_unseen-0.05:
print('Saving model at epoch: ', epoch)
trainer.save_model(epoch, model_path)
best_unseen = avg_success_unseen
if config_dic['visdom']:
vis.line(X=array([[epoch, epoch]]),
Y=np.array([[test_seen_accuracy_list[-1],
test_unseen_accuracy_list[-1]]]),
win=accuracy_window,update='append')
# Visualize
if config_dic['visdom']:
vis.line(X=array([[epoch, epoch]]),
Y=array([[train_trans_loss_list[-1],
test_trans_loss_list[-1]]]),
win=trans_loss_window,update='append')
vis.line(X=array([[epoch, epoch]]),
Y=np.array([[train_rot_loss_list[-1],
test_siamese_loss_list[-1]]]),
win=rot_loss_window,update='append')