-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpytorchtools.py
62 lines (55 loc) · 2.49 KB
/
pytorchtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, path1='checkpoint1.pt', path2='checkpoint2.pt',
path3='checkpoint3.pt', trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path1 = path1
self.path2 = path2
self.path3 = path3
self.trace_func = trace_func
def __call__(self, val_loss, model1, model2, model3):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model1, self.path1)
self.save_checkpoint(val_loss, model2, self.path2)
self.save_checkpoint(val_loss, model3, self.path3)
elif score < self.best_score + self.delta:
self.counter += 1
# self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model1, self.path1)
self.save_checkpoint(val_loss, model2, self.path2)
self.save_checkpoint(val_loss, model3, self.path3)
self.counter = 0
def save_checkpoint(self, val_loss, model, path):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), path)
self.val_loss_min = val_loss