forked from AnneCollins/TenSimpleRulesModeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFigure3B_localminima.m
226 lines (204 loc) · 6.17 KB
/
Figure3B_localminima.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
function localminima
%clear all
alphas = [.06:.01:.5];% learning rate
betas = [1 4:2:20];% inverse temperature
rhos=[.5:.01:.98];% WM memory weight
% for coarser parameters and faster brute force computation
% [~,coarsealphas] = intersect(alphas,[.05:.05:.5]);%[0.05:.05:1];
% [~,coarsebetas] = intersect(betas,[1 4:4:20]);%[1 5:5:50];
% [~,coarserhos]=intersect(rhos,[.5:.05:.99]);%[0:.05:1];
Ks=2:6;% capacity
% real simulation parameters
realalpha=.1;
realbeta=8;
realrho=.9;
realK=4;
%% simulate one data set
[stim,update,choice,rew,setsize]=simulate(realalpha,realbeta,realrho,realK);
%% fmincon fitting
% set fmincon options
options=optimset('MaxFunEval',100000,'Display','off','algorithm','active-set');%
% run optimization over 10 starting points
for init=1:10
% random starting point
x0=rand(1,3);
% optimize
[pval,fval,bla,bla2] =fmincon(@(x) computellh(x,realK,stim,update,choice,rew,setsize),x0,[],[],[],[],...
[0 0 0],[1 1 1],[],options);
% store optimization result
pars(init,:) = [pval,fval];
end
% find global best
[mf,i]=min(pars(:,end));
pars = pars(i,:);
%% brute force fitting
i1=0;
for alpha=alphas
i1=i1+1
i2=0;
for beta=betas
i2=i2+1;
j1=0;
for rho=rhos
j1=j1+1;
j2=0;
for K=realK
j2=j2+1;
p=[rho,alpha,beta/50];
% store likelihood over parameters in a mesh
llh(i1,i2,j1,j2)=-computellh(p,K,stim,update,choice,rew,setsize);
end
end
end
end
%% plot the results - in 2d
figure;
subplot(2,2,1)
llh2=squeeze(max(squeeze(llh),[],2));
mi=min(llh2(:));
ma=max(llh2(:));
x=repmat(1:length(alphas),length(rhos),1)';
y=repmat(1:length(rhos),length(alphas),1);
[mb,i]=max(llh2(:));
imagesc(alphas(1:end),rhos(1:end),llh2',[mi,ma])
colorbar
hold on
plot(alphas(x(i)),rhos(y(i)),'ok')
plot(realalpha,realrho,'xr')
plot(pars(2),pars(1),'*k')
xlabel('alpha')
ylabel('rho')
set(gca,'fontsize',16)
%
%% iterate simulation and fitting
options=optimset('MaxFunEval',100000,'Display','off','algorithm','active-set');%
% number of random starting points for optimizer
ninitialpoints=10;
% for 100 simulations
for iter = 1:100
disp(['simulation #',num2str(iter)])
% generate data
[stim,update,choice,rew,setsize]=simulate(realalpha,realbeta,realrho,realK);
pars=[];
% fit simulated data with ninitialpoints random starting points
for init=1:ninitialpoints
x0=rand(1,3);
[pval,fval,bla,bla2] =fmincon(@(x) computellh(x,realK,stim,update,choice,rew,setsize),x0,[],[],[],[],...
[0 0 0],[1 1 1],[],options);
pars(init,:) = [pval,fval];
[m,i]=min(pars(:,end));
bestllh(iter,init)=m;
bestpars(iter,init,:)=pars(i,1:end-1);
end
% find global best fit
[mf,i]=min(pars(:,end));
% find at which random starting point it was found
when(iter,1)=i;
% find at which random starting point a likelihood within .01 of the
% global best was found
i=find(bestllh(iter,:)<bestllh(iter,end)+.01);
when(iter,2)=i(1);
% find at which random starting point a likelihood within .1 of the
% global best was found
i=find(bestllh(iter,:)<bestllh(iter,end)+.1);
when(iter,3)=i(1);
end
% compute what the best log-likelihood found was up to random starting
% point i, substracting the final best log-likelihood (putative global
% best)
bestllh = bestllh(:,1:end-1)-repmat(bestllh(:,end),[1,ninitialpoints-1]);
subplot(2,2,2)
errorbar(mean(bestllh),std(bestllh)/sqrt(iter),'linewidth',1)
set(gca,'fontsize',14)
xlabel('starting point iteration')
ylabel('local-global best nlh')
% compute distance to "gloabl" best parameters as a function of optimizer
% iteration over random starting points.
bestpars = bestpars(:,1:end-1,:)-repmat(bestpars(:,end,:),[1,ninitialpoints-1,1]);
bestpars = sum(bestpars.^2,3);
subplot(2,2,3)
errorbar(mean(bestpars),std(bestpars)/sqrt(iter),'linewidth',1)
set(gca,'fontsize',14)
xlabel('starting point iteration')
ylabel('d(local-global best param)')
% plot when
subplot(2,2,4)
hold on
for j=1:2
plot(sort(when(:,j)),'o-','linewidth',1)
end
set(gca,'fontsize',14)
legend('global = best','global = |llh-best|<.01')
ylabel('iteration where global llh first reached')
xlabel('sorted simulation number')
end
%% simulate data
function [stim,update,choice,rew,setsize]=simulate(realalpha,realbeta,realrho,realK);
b=0;
t=0;
% 3 iterations
for rep=1:3
% of blocks of set sizes 2 through 6
for ns=2:6
b=b+1;
update(t+1)=1;
% WM weight
w=realrho*(min(1,realK/ns));
% initialize RL and WM
Q = (1/3)+zeros(ns,3);
WM = (1/3)+zeros(ns,3);
trials = repmat(1:ns,1,15);
for s=trials
t=t+1;
stim(t)=s;
setsize(t)=ns;
% RL policy
softmax1 = exp(realbeta*Q(s,:))/sum(exp(realbeta*Q(s,:)));
% WM policy (high beta=50 captures perfect 1-trial memory)
softmax2 = exp(50*WM(s,:))/sum(exp(50*WM(s,:)));
% mixture policy
pr = (1-w)*softmax1 + w*softmax2;
% make choice stochastically
r=rand;
if r<pr(1)
choice(t)=1;
elseif r<pr(1)+pr(2)
choice(t)=2;
else
choice(t)=3;
end
% feedback
rew(t)= choice(t)==(rem(s,3)+1);
% RL learning
Q(s,choice(t))=Q(s,choice(t))+realalpha*(rew(t)-Q(s,choice(t)));
% WM update
WM(s,choice(t))=rew(t);
end
end
end
update(t)=0;
end
%% compute likelihood
function llh=computellh(p,K,stim,update,choice,rew,setsize)
global ppath;
ppath=[ppath;p];
rho=p(1);
alpha=p(2);
beta=50*p(3);
l=0;
for t=1:length(stim)
s=stim(t);
if update(t)
Q = (1/3)+zeros(setsize(t),3);
WM = (1/3)+zeros(setsize(t),3);
end
w=rho*(min(1,K/setsize(t)));
softmax1 = exp(beta*Q(s,:))/sum(exp(beta*Q(s,:)));
softmax2 = exp(50*WM(s,:))/sum(exp(50*WM(s,:)));
pr = (1-w)*softmax1 + w*softmax2;
l=l+log(pr(choice(t)));
Q(s,choice(t))=Q(s,choice(t))+alpha*(rew(t)-Q(s,choice(t)));
WM(s,choice(t))=rew(t);
end
llh=-l;
end