-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel_equation_fitting.py
171 lines (145 loc) · 2.85 KB
/
model_equation_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from sklearn.linear_model import LinearRegression
import numpy as np
print('-'*50 + "Fitting Linear" + '-'*50)
# Fit a linear regression model to the linear part
X = np.array([
256,
512,
1024,
2048,
4096,
8192,
14166,
28232,
]).reshape(-1, 1)
y = [
15.318,
30.128,
59,
110.4,
208.842,
417,
725,
1423,
]
linear = LinearRegression()
# Fit the model
linear.fit(X, y)
print("Linear Coefficients:", linear.coef_)
print("Linear Intercept:", linear.intercept_)
# Calculate and print the R2 value
r2_score = linear.score(X, y)
print("Linear R2 value:", r2_score)
query = 512
p = linear.predict([[query]])
print(p)
print('-'*50 + "Fitting extend attention" + '-'*50)
# Fit a linear regression model to attention part of prompt calculation
# Example dataset
query_tokens = [
128,
256,
512,
1024,
2048,
4096,
8192,
14166,
28232,
256,
256,
512,
1024,
1024,
512,
512,
512,
4096,
]
ctx_lens = [
8192,
8192,
8192,
8192,
8192,
8192,
8192,
14166,
28232,
4096,
8192,
4096,
4096,
8192,
8192,
16384,
32768,
4096,
]
ops = [q * c for q, c in zip(query_tokens, ctx_lens)]
X = [[q, c, o] for q, c, o in zip(query_tokens, ctx_lens, ops)]
y = [
12.939,
13.122,
19.001,
29.326,
48.529,
75.11,
101,
287.931,
1113,
6.661,
13.122,
9.54,
14.3,
29.326,
19.001,
37.893,
75.709,
1.283,
]
# Create a linear regression model
model = LinearRegression()
# Fit the model
model.fit(X, y)
# Print the coefficients and intercept
print("multi query attention Coefficients:", model.coef_)
print("multi query attention Intercept:", model.intercept_)
# Calculate and print the R2 value
r2_score = model.score(X, y)
print("multi query attention R2 value:", r2_score)
new_query = 1024
new_ctx = 1024
p = model.predict([[new_query, new_ctx, new_query * new_ctx]])
# p = model.predict(X)
print(p)
print('-'*50 + "Fitting other percentage " + '-'*50)
query_tokens = [
64, 128, 192, 224, 256, 384, 512, 1024, 2048, 4096, 8192, 14166, 28232,
512,
256, 256, 512, 1024, 512, 512, 512,
]
seq_lens = [
2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 4096, 8192, 14166, 28232,
512,
4096, 8192, 4096, 4096, 8192, 16384, 32768,
]
y = [
0.209375, 0.2256690998, 0.197572314, 0.1590909091, 0.1521709786, 0.2258379434, 0.1184210526, 0.1028571429, 0.08667635118, 0.08542552624, 0.07769639776, 0.06940854917, 0.05582986066,
0.1716473001,
0.1785189597, 0.1328608924, 0.1193159449, 0.1021236646, 0.1325932778, 0.09036196005, 0.0660668071,
]
X = [[q, s, 1/q, 1/s] for q, s in zip(query_tokens, seq_lens)]
model = LinearRegression()
# Fit the model
model.fit(X, y)
# Print the coefficients and intercept
print("multi query other percent Coefficients:", model.coef_)
print("multi query other percent Intercept:", model.intercept_)
# Calculate and print the R2 value
r2_score = model.score(X, y)
print("multi query other percent R2 value:", r2_score)
new_query = 512
new_ctx = 8291
p = model.predict([[new_query, new_ctx, 1/new_query, 1/new_ctx]])
print(p)