forked from hassancs91/AI-agents-video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson_helpers.py
136 lines (112 loc) · 4.25 KB
/
json_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import re
import json
from pydantic import BaseModel, ValidationError
from typing import get_type_hints
def model_to_json(model_instance):
"""
Converts a Pydantic model instance to a JSON string.
Args:
model_instance (YourModel): An instance of your Pydantic model.
Returns:
str: A JSON string representation of the model.
"""
return model_instance.model_dump_json()
def extract_json(text_response):
pattern = r'\{.*?\}'
matches = re.finditer(pattern, text_response, re.DOTALL)
json_objects = []
for match in matches:
json_str = extend_search_new(text_response, match.span())
try:
json_obj = json.loads(json_str)
json_objects.append(json_obj)
except json.JSONDecodeError:
continue
return json_objects if json_objects else None
def extend_search_new(text, span):
start, end = span
nest_count = 1 # Starts with 1 since we know '{' is at the start position
for i in range(end, len(text)):
if text[i] == '{':
nest_count += 1
elif text[i] == '}':
nest_count -= 1
if nest_count == 0:
return text[start:i+1]
return text[start:end]
def extract_json_old(text_response):
# This pattern matches a string that starts with '{' and ends with '}'
pattern = r'\{[^{}]*\}'
matches = re.finditer(pattern, text_response)
json_objects = []
for match in matches:
json_str = match.group(0)
try:
# Validate if the extracted string is valid JSON
json_obj = json.loads(json_str)
json_objects.append(json_obj)
except json.JSONDecodeError:
# Extend the search for nested structures
extended_json_str = extend_search(text_response, match.span())
try:
json_obj = json.loads(extended_json_str)
json_objects.append(json_obj)
except json.JSONDecodeError:
# Handle cases where the extraction is not valid JSON
continue
if json_objects:
return json_objects
else:
return None # Or handle this case as you prefer
def extend_search(text, span):
# Extend the search to try to capture nested structures
start, end = span
nest_count = 0
for i in range(start, len(text)):
if text[i] == '{':
nest_count += 1
elif text[i] == '}':
nest_count -= 1
if nest_count == 0:
return text[start:i+1]
return text[start:end]
def json_to_pydantic(model_class, json_data):
try:
model_instance = model_class(**json_data)
return model_instance
except ValidationError as e:
print("Validation error:", e)
return None
def validate_json_with_model(model_class, json_data):
"""
Validates JSON data against a specified Pydantic model.
Args:
model_class (BaseModel): The Pydantic model class to validate against.
json_data (dict or list): JSON data to validate. Can be a dict for a single JSON object,
or a list for multiple JSON objects.
Returns:
list: A list of validated JSON objects that match the Pydantic model.
list: A list of errors for JSON objects that do not match the model.
"""
validated_data = []
validation_errors = []
if isinstance(json_data, list):
for item in json_data:
try:
model_instance = model_class(**item)
validated_data.append(model_instance.dict())
except ValidationError as e:
validation_errors.append({"error": str(e), "data": item})
elif isinstance(json_data, dict):
try:
model_instance = model_class(**json_data)
validated_data.append(model_instance.dict())
except ValidationError as e:
validation_errors.append({"error": str(e), "data": json_data})
else:
raise ValueError("Invalid JSON data type. Expected dict or list.")
return validated_data, validation_errors
# Example usage
# text_response = "Some text with JSON {\"key\": \"value\", \"nested\": {\"key2\": \"value2\"}} embedded in it."
# extracted_json = extract_json(text_response)
# print(extracted_json)