Skip to content

Latest commit

 

History

History
150 lines (114 loc) · 5.65 KB

README.md

File metadata and controls

150 lines (114 loc) · 5.65 KB

build tests

ContextSV

ContextSV A long-read, whole-genome structural variant (SV) caller. It takes as input long read alignments (BAM), the corresponding reference genome (FASTA), a VCF with high-quality SNPs (e.g. via GATK, Deepvariant, NanoCaller, and gnomAD database VCF files with SNP population frequencies for each chromosome. Class documentation is available at https://wglab.openbioinformatics.org/ContextSV

Installation (Linux)

Using Anaconda (recommended)

First, install Anaconda.

Next, create a new environment. This installation has been tested with Python 3.11:

conda create -n contextsv python=3.11
conda activate contextsv

ContextSV can then be installed using the following command:

conda install -c bioconda -c wglab contextsv=1.0.0

Building from source (for testing/development)

First install Anaconda. Then follow the instructions below to install LongReadSum and its dependencies:

git clone https://github.com/WGLab/ContextSV
cd ContextSV
conda env create -f environment.yml
make

Downloading gnomAD SNP population frequencies

SNP population allele frequency information is used for copy number predictions in this tool (see PennCNV for specifics). We recommend downloading this data from the Genome Aggregation Database (gnomAD).

Download links for genome VCF files are located here (last updated April 3, 2024):

Example download

download_dir="~/data/gnomad/v4.0.0/"

chr_list=("1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "X" "Y")

for chr in "${chr_list[@]}"; do
    echo "Downloading chromosome ${chr}..."
    wget "https://storage.googleapis.com/gcp-public-data--gnomad/release/4.0/vcf/genomes/gnomad.genomes.v4.0.sites.chr${chr}.vcf.bgz" -P "${download_dir}"
done

Finally, create a text file that specifies the chromosome and its corresponding gnomAD filepath. This file will be passed in as an argument:

gnomadv4_filepaths.txt

1=~/data/gnomad/v4.0.0/gnomad.genomes.v4.0.sites.chr1.vcf.bgz
2=~/data/gnomad/v4.0.0/gnomad.genomes.v4.0.sites.chr2.vcf.bgz
3=~/data/gnomad/v4.0.0/gnomad.genomes.v4.0.sites.chr3.vcf.bgz
...
X=~/data/gnomad/v4.0.0/gnomad.genomes.v4.0.sites.chrX.vcf.bgz
Y=~/data/gnomad/v4.0.0/gnomad.genomes.v4.0.sites.chrY.vcf.bgz

Calling structural variants

Example full script generating a merged VCF of structural variants

# Activate the environment
conda activate contextsv

# Set the input reference genome
ref_file="~/data/GRCh38.fa"

# Set the input alignment file (e.g. from minimap2)
long_read_bam="~/data/HG002.GRCh38.bam"

# Set the input SNPs file (e.g. from NanoCaller)
snps_file="~/data/variant_calls.snps.vcf.gz"

# Set the SNP population frequencies filepath
pfb_file="~/data/gnomadv4_filepaths.txt"

# Set the output directory
output_dir=~/data/contextSV_output

# Specify the number of threads (system-specific)
thread_count=40

# Run SV calling (~3-4 hours for whole-genome, 40 cores)
python contextsv --threads $thread_count -o $output_dir -lr $long_read_bam --snps $snps_file --reference $ref_file --pfb $pfb_file

# The output VCF filepath is located here:
output_vcf=$output_dir/sv_calls.vcf

# Merge SVs (~3-4 hours for whole-genome, 40 cores)
python contextsv --merge $output_vcf

# The final merged VCF filepath is located here:
merged_vcf=$output_dir/sv_calls.merged.vcf

Input arguments

python contextsv --help

ContextSV: A tool for integrative structural variant detection.

options:
  -h, --help            show this help message and exit
  -lr LONG_READ, --long-read LONG_READ
                        path to the long read alignment BAM file
  -g REFERENCE, --reference REFERENCE
                        path to the reference genome FASTA file
  -s SNPS, --snps SNPS  path to the SNPs VCF file
  --pfb PFB             path to the file with SNP population frequency VCF filepaths (see docs for format)
  -o OUTPUT, --output OUTPUT
                        path to the output directory
  -r REGION, --region REGION
                        region to analyze (e.g. chr1, chr1:1000-2000). If not provided, the entire genome will be analyzed
  -t THREADS, --threads THREADS
                        number of threads to use
  --hmm HMM             path to the PennCNV HMM file
  --window-size WINDOW_SIZE
                        window size for calculating log2 ratios for CNV predictions (default: 10 kb)
  -d, --debug           debug mode (verbose logging)
  -v, --version         print the version number and exit

Revision history

For release history, please visit here.

Getting help

Please refer to the contextSV issue pages for posting your issues. We will also respond your questions quickly. Your comments are critical to improve our tool and will benefit other users.