forked from ccluri/metabolic_spiking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathret_intrinsic_summary.py
147 lines (138 loc) · 5.35 KB
/
ret_intrinsic_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
from mitochondria import Mito
from gates import get_ros
from utils import Recorder, Q_nak
def ret_run_sim(mito_baseline, spike_quanta, psi_fac=1e-3, refrac=6, theta_ret=0.025, tau_rise=5):
print('Baseline : ', mito_baseline, 'Quanta :', spike_quanta)
print('Psi factor: ', psi_fac, 'Refrac :', refrac)
dt = 0.01
time = 2500
t = np.arange(0, time, dt)
qdur = 1000
qtime = np.arange(0, qdur, dt)
this_q = Q_nak(qtime, fact=1, tau_rise=tau_rise)
qlen = len(this_q)
ros = get_ros()
# Mitochondria
mi = Mito(baseline_atp=mito_baseline)
mi.steadystate_vals(time=1000)
ros.init_val(mi.atp, mi.psi)
r_mito = Recorder(mi, ['atp', 'psi'], time, dt)
spike_expns = np.zeros_like(t) + mi.atp
leak_expns = np.zeros_like(t)
ros_vals = np.zeros_like(t)
ms_vals = np.zeros_like(t)
spikes = [] # fake spikes
fire_mode = False
spiked = False
elapsed = 0
for i in range(len(t)):
mi.update_vals(dt,
atp_cost=spike_expns[i],
leak_cost=leak_expns[i])
ros.update_vals(dt, mi.atp, mi.psi, mi.k_ant*1000)
ros_vals[i] = ros.get_val()
msig = ros.get_val()*(mi.atp - 0.71218258)
ms_vals[i] = msig
if msig > theta_ret: # RET ROS
fire_mode = True
else:
fire_mode = False
if fire_mode and not spiked:
spiked = True
elapsed = 0
spikes.append(t[i])
try:
spike_expns[i:i+qlen] -= this_q*spike_quanta
leak_expns[i:i+qlen] += this_q*psi_fac*spike_quanta
except ValueError:
spike_expns[i:] -= this_q[:len(spike_expns[i:])]*spike_quanta
leak_expns[i:] += this_q[:len(leak_expns[i:])]*psi_fac*spike_quanta
else:
if elapsed < refrac:
elapsed += dt
else:
spiked = False
r_mito.update(i)
print(spikes)
return spikes, time, t, r_mito, ros_vals, ms_vals
def process_spikes(spikes, isi_preset, time):
spikes = np.array(spikes)
spikes = spikes[np.where(spikes > 500)] # Ignore the first 500ms
time = time-500
isi = np.diff(spikes)
try:
isi_min = np.min(isi)
isi_max = np.max(isi)
fr = len(spikes) / (time)
burst_array = np.isclose(isi, isi_preset, rtol=1e-1)
bursting = np.any(burst_array) # In maxfiring regime
except ValueError: # no spikes
isi_min = None
isi_max = None
bursting = False
fr = 0
if bursting:
cv = np.std(isi)/np.mean(isi) # From Vogels2005
isi_dur = isi_min
try:
ibi_dur = isi_max
per_burst = np.argwhere(~burst_array)[-1][0] - \
np.argwhere(~burst_array)[-2][0]
mode = 0 # 'Bursting'
except IndexError:
mode = 3 # 'Continuous'
ibi_dur = time
per_burst = int(time/isi_min)
else:
try:
isi_dur = isi[-1]
ibi_dur = isi[-1]
per_burst = 1
mode = 2 # 'Regular'
cv = np.std(isi)/np.mean(isi)
except IndexError: # No spikes
isi_dur = 0
ibi_dur = 0
per_burst = 0
mode = 1 # 'Silent'
cv = np.nan # CV remains undefined
return isi_dur, ibi_dur, per_burst, mode, cv, fr
def mega_run(filename_prefix='', refrac=6, tau_rise=5):
test_spike_quants = np.logspace(-2.5, -0.6, 10) # np.logspace(-0.15, 1.75, 10)
test_bls_vals = np.linspace(15, 40, 10)
QQ = len(test_spike_quants)
BB = len(test_bls_vals)
isi_dur_tot = np.zeros((QQ, BB))
ibi_dur_tot = np.zeros((QQ, BB))
per_brst_tot = np.zeros((QQ, BB))
netros_tot = np.zeros((QQ, BB))
mode_tot = np.zeros((QQ, BB))
cv_tot = np.zeros((QQ, BB))
fr_tot = np.zeros((QQ, BB))
for qq, spike_quanta in enumerate(test_spike_quants):
for bb, mito_baseline in enumerate(test_bls_vals):
spk, time, t, r_mito, ros_vals, ms_vals = ret_run_sim(mito_baseline,
spike_quanta,
refrac=refrac,
tau_rise=tau_rise)
isi_dur, ibi_dur, per_brst, md, cv, fr = process_spikes(spk, refrac, time)
netros = np.average(ros_vals[int(20000):])
print(isi_dur, ibi_dur, per_brst, netros, md, cv)
isi_dur_tot[qq, bb] = isi_dur
ibi_dur_tot[qq, bb] = ibi_dur
per_brst_tot[qq, bb] = per_brst
netros_tot[qq, bb] = netros
mode_tot[qq, bb] = md
cv_tot[qq, bb] = cv
fr_tot[qq, bb] = fr
np.savez('./spike_compensation/spike_compensate_summary_' + filename_prefix + '.npz',
isi_dur=isi_dur_tot, ibi_dur=ibi_dur_tot, per_brst=per_brst_tot,
cv=cv_tot, netros=netros_tot, mode=mode_tot, fr=fr_tot,
spike_quanta=test_spike_quants, mito_baseline=test_bls_vals)
if __name__ == '__main__':
for ref in [2, 6, 10]:
for tau_r in [3, 5, 7]:
filename_prefix = 'refrac_' + str(ref) + '_rise_' + format(tau_r, '.1f')
mega_run(filename_prefix, refrac=ref, tau_rise=tau_r)
print('Finished', filename_prefix)