forked from ccluri/metabolic_spiking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnazaret_mito.py
137 lines (115 loc) · 2.4 KB
/
nazaret_mito.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
'''
Code for C. Nazaret et. al. / Journal of theoretical biology 2009
Original code in scilab (author Nazaret)
Ported to python3 (author chaitanya)
This code generates figure 7 and figure 8 from the paper.
'''
from math import exp
from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt
def tca_etc(yy, tt):
pyr, acc, cit, akg, oaa, nad, atp, dpsi = yy
v1 = 1
v2 = beta2*nad*pyr
v3 = beta3*acc*oaa
v4 = beta4*cit*nad
v5 = beta5*akg*(1-atp)*nad
v6 = beta6*(oaa-d6*akg)
v7 = beta7*pyr*atp
v8 = beta8*oaa
vl = betal*dpsi
vant = bant*atp
vr = betar*(1-nad)/(dr1+1-nad)/(1+exp(dr2*(dpsi-1)))
acrit = Pis/(Pis+exp(dg0-dc*dpsi))
vatp = batp*(2/(1+exp(datp*(atp-acrit)))-1)
dpyrdt = v1-v2-v7
daccdt = (v2-v3)*e1
dcitdt = (v3-v4)*e2
dakgdt = (v4+v6-v5)*e3
doaadt = (v5+v7-v3-v8-v6)*e4
dnaddtul = (-v2-v4-2*v5+vr)*e5
datpdt = (vatp-vant+v5-v7)*e6
ddpsidt = (10*vr-vl-3*vatp-vant)*e7
return [dpyrdt, daccdt, dcitdt, dakgdt, doaadt, dnaddt, datpdt, ddpsidt]
R = 8.314
T = 298
F = 96465
a = 100
b = 4
at = 4.16e-3
dg0 = 30540/R/T
frt = 1.2*3*F/R/T
h2opi = 1/2.4e-3
nt = 1.07e-3
asp = 1.6e-3
glu = 5.3e-3
psim = 0.150
C = 6.75e-3
K = 0.002
Keq = 0.12*glu/asp
# k1=0.000038
# k2=192.50253
# k3=72380.952
# k4=67.375887
# k5=57957.752
# k6= 0.0203014
# k7= 28.011204
# k8=2.5333333
# kl= 0.0004267
kant = 0.0538700
katp = 0.1318967
kr = 0.0024905
k1 = 38e-6
k2 = 152
k3 = 57142
k4 = 53
k5 = 82361
k6 = 3.2e-3
k7 = 40
k8 = 3.6
kl = 0.426e-3
pyrs = 0.14e-3
accs = 0.07e-3
cits = 0.4e-3
kgs = 0.25e-3
oaas = 0.005e-3
nads = 0.94e-3
atps = 3.23e-3
psis = 0.150
beta2 = k2/k1*nt*pyrs
beta3 = k3/k1*accs*oaas
beta4 = k4/k1*cits*nt
beta5 = k5/k1*kgs*nt*at
beta6 = k6/k1*oaas
beta7 = k7/k1*pyrs*at
beta8 = k8/k1*oaas
betar = kr/k1
bant = kant/k1*at
betal = kl/k1*psim
Kn = K/nt
d6 = kgs/(oaas*Keq)
dr1 = K/nt
dr2 = psim*a
Pis = 2.4e-3
batp = katp/k1
dc = frt*psim
datp = b*at
e1 = pyrs/accs
e2 = pyrs/cits
e3 = pyrs/kgs
e4 = pyrs/oaas
e5 = pyrs/nt
e6 = pyrs/at
e7 = pyrs/psis/C
# Figure 8
x0 = [1, 1, 1, 1, 1, nads/nt, 1, 1] # High ATP state
# Figure 7
# x0 = [1, 1, 1, 1, 1, nads/nt, 0.8*atps/at, 1] # Low ATP state
labels = ['pyr', 'acc', 'cit', 'akg', 'oaa', 'nad', 'atp', 'dpsi']
t = np.linspace(0, 50, num=1000)
y = odeint(tca_etc, x0, t)
for ii in range(8):
plt.plot(t, y[:,ii], label=labels[ii])
plt.legend()
plt.show()