-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMG_simpleHinge.m
88 lines (67 loc) · 2.43 KB
/
MG_simpleHinge.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% %%%
%%% Structural Topology Optimization %%%
%%% %%%
%%% Solid Isotropic Material with Penalization (SIMP) %%%
%%% Bidirectional Evolutionary Structual Optimization (BESO) %%%
%%% %%%
%%% Vicente Cholvi Gil %%%
%%% February 10th 2021 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear; clc; close all
addpath('TopologyOptimizationToolbox')
totaltime = tic;
%% Mesh Generation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mS = defaultMeshSettings();
mS.Lx = 2; mS.Ly = 1; mS.Lz = 1;
mS.d = 0.15;
m = rMesh(mS);
%% Mesh Modification
m.removeElements((m.X - 1.5).^2 + (m.Z - 0.5).^2 < 0.2.^2)
m.nonDesignElements( (m.X < 0.3) & (m.Z == 0) )
%% Plotting
figure(1);
m.plot; hold on
m.plotNonDesign
title('Loads and Boundary Conditions')
%% FEM Object
f = femObject(m);
%% Boundary Conditions
f.addBC('XYZ', (m.X < 0.5) & (m.Z == 0) & (abs(m.Y - 0.5) > 0.2))
q1 = abs((m.X - 1.5).^2 + (m.Z - 0.5).^2 -0.2^2) < 0.1.^2; % Condition 1
q2 = abs(m.Y - 0.5) < 0.15; % Condition 2
p = -1000./sum(q1.*q2); % Magnitude
f.addLoad('Z', p.*q1.*q2)
hold on
f.plot('load', 'Z', 'r')
f.plot('bound', [], 'b')
title('Design Domain, Loads and Boundary Conditions')
%% Strain Stress Law
E = 200e9;
nu = 0.3;
C = strainStressLaw(E, nu);
f.addMaterial(C)
%% Optimization Settings SIMP
os = defaultOptimSettings();
os.Vstar = 0.25;
os.numIter = 20;
os.method = 'SIMP';
%% Optimization Object
optimObj = optimizationObject(f, os);
%% Solid Isotropic Material with Penalization (SIMP) Optimization
optimObj.startOptimization(2,3,'simpleHinge')
optimObj.calculateStresses
%% Color it in
figure(4)
[V, sConn, X0, Y0, Z0] = optimObj.boundary1([], [], 'Y');
colormap(flipud(jet))
%% Other Plots
figure(5)
optimObj.plot('VM')
set(gca,'ColorScale','log')
figure(6)
optimObj.plot('S', 1)
colormap(twoColorColormap)
caxis([-14e4 14e4])
figure(7)
optimObj.plot('D', 3)