forked from voidism/DoLa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgsm8k_eval.py
341 lines (296 loc) · 13.4 KB
/
gsm8k_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Ref: https://github.com/kojima-takeshi188/zero_shot_cot
# Ref: https://github.com/alibaba/FederatedScope/blob/dev/llm/federatedscope/llm/eval/eval_for_gsm8k/eval.py
import re
import os
import json
import random
import torch
import numpy as np
import transformers
from tqdm import tqdm, trange
import argparse
import ssl
import urllib.request
from dola import DoLa
transformers.logging.set_verbosity(40)
ANS_RE = re.compile(r"#### (\-?[0-9\.\,]+)")
INVALID_ANS = "[invalid]"
N_SHOT = 8
COT_FLAG = True
DEBUG = True
ANSWER_TRIGGER = "The answer is"
def load_jsonl(file_path,
instruction='instruction',
input='input',
output='output',
category='category',
is_gzip=False):
# Format of each line:
# {'instruction': ..., 'input': ..., 'output':...}
list_data_dict = []
open_func = open if not is_gzip else gzip.open
with open_func(file_path, 'r') as f:
for line in f:
item = json.loads(line)
new_item = dict(
instruction=item[instruction] if instruction in item else None,
input=item[input] if input in item else None,
output=item[output] if output in item else None,
category=item[category] if category in item else None)
item = new_item
list_data_dict.append(item)
return list_data_dict
def download_url(url: str, folder='folder'):
"""
Downloads the content of an url to a folder. Modified from \
https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric
Args:
url (string): The url of target file.
folder (string): The target folder.
Returns:
string: File path of downloaded files.
"""
file = url.rpartition('/')[2]
file = file if file[0] == '?' else file.split('?')[0]
path = os.path.join(folder, file)
if os.path.exists(path):
print(f'File {file} exists, use existing file.')
return path
print(f'Downloading {url}')
os.makedirs(folder, exist_ok=True)
ctx = ssl._create_unverified_context()
data = urllib.request.urlopen(url, context=ctx)
with open(path, 'wb') as f:
f.write(data.read())
return path
def extract_answer_from_output(completion):
match = ANS_RE.search(completion)
if match:
match_str = match.group(1).strip()
match_str = match_str.replace(",", "")
return match_str
else:
return INVALID_ANS
def is_correct(model_answer, answer):
gt_answer = extract_answer_from_output(answer)
assert gt_answer != INVALID_ANS
return model_answer == gt_answer
def create_demo_text(n_shot=8, cot_flag=True, shuffle=False):
question, chain, answer = [], [], []
question.append("There are 15 trees in the grove. "
"Grove workers will plant trees in the grove today. "
"After they are done, there will be 21 trees. "
"How many trees did the grove workers plant today?")
chain.append("There are 15 trees originally. "
"Then there were 21 trees after some more were planted. "
"So there must have been 21 - 15 = 6.")
answer.append("6")
question.append(
"If there are 3 cars in the parking lot and 2 more cars arrive, "
"how many cars are in the parking lot?")
chain.append("There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.")
answer.append("5")
question.append(
"Leah had 32 chocolates and her sister had 42. If they ate 35, "
"how many pieces do they have left in total?")
chain.append("Originally, Leah had 32 chocolates. "
"Her sister had 42. So in total they had 32 + 42 = 74. "
"After eating 35, they had 74 - 35 = 39.")
answer.append("39")
question.append(
"Jason had 20 lollipops. He gave Denny some lollipops. Now Jason "
"has 12 lollipops. How many lollipops did Jason give to Denny?")
chain.append(
"Jason started with 20 lollipops. Then he had 12 after giving some "
"to Denny. So he gave Denny 20 - 12 = 8.")
answer.append("8")
question.append(
"Shawn has five toys. For Christmas, he got two toys each from his "
"mom and dad. How many toys does he have now?")
chain.append(
"Shawn started with 5 toys. If he got 2 toys each from his mom and "
"dad, then that is 4 more toys. 5 + 4 = 9.")
answer.append("9")
question.append(
"There were nine computers in the server room. Five more computers "
"were installed each day, from monday to thursday. "
"How many computers are now in the server room?")
chain.append(
"There were originally 9 computers. For each of 4 days, 5 more "
"computers were added. So 5 * 4 = 20 computers were added. "
"9 + 20 is 29.")
answer.append("29")
question.append(
"Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On "
"wednesday, he lost 2 more. "
"How many golf balls did he have at the end of wednesday?")
chain.append(
"Michael started with 58 golf balls. After losing 23 on tuesday, "
"he had 58 - 23 = 35. After losing 2 more, "
"he had 35 - 2 = 33 golf balls.")
answer.append("33")
question.append("Olivia has $23. She bought five bagels for $3 each. "
"How much money does she have left?")
chain.append("Olivia had 23 dollars. "
"5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. "
"So she has 23 - 15 dollars left. 23 - 15 is 8.")
answer.append("8")
# randomize order of the examples ...
index_list = list(range(len(question)))
if shuffle:
random.shuffle(index_list)
# Concatenate demonstration examples ...
demo_text = ""
for i in index_list[:n_shot]:
if cot_flag:
demo_text += "Q: " + question[i] + "\nA: " + chain[i] + " " + \
ANSWER_TRIGGER + " " + answer[i] + ".\n\n"
else:
demo_text += "Question: " + question[i] + "\nAnswer: " + \
ANSWER_TRIGGER + " " + answer[i] + ".\n\n"
return demo_text
def build_prompt(input_text, n_shot, cot_flag, shuffle):
demo = create_demo_text(n_shot, cot_flag, shuffle)
input_text_prompt = demo + "Q: " + input_text + "\n" + "A:"
return input_text_prompt
def clean_answer(model_pred):
model_pred = model_pred.lower()
preds = model_pred.split(ANSWER_TRIGGER.lower())
answer_flag = True if len(preds) > 1 else False
if answer_flag:
# Pick first answer with flag
pred = preds[1]
else:
# Pick last number without flag
pred = preds[-1]
pred = pred.replace(",", "")
pred = [s for s in re.findall(r'-?\d+\.?\d*', pred)]
if len(pred) == 0:
return INVALID_ANS
if answer_flag:
# choose the first element in list
pred = pred[0]
else:
# choose the last element in list
pred = pred[-1]
# (For arithmetic tasks) if a word ends with period, it will be omitted ...
if pred[-1] == ".":
pred = pred[:-1]
return pred
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="huggyllama/llama-7b")
parser.add_argument("--num-gpus", type=str, default="1")
parser.add_argument("--max_gpu_memory", type=int, default=27)
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--data-path", type=str, default="./gsm8k")
parser.add_argument("--output-path", type=str, default="./gsm8k_result")
# parallel mode (split the dataset into multiple parts, inference by separate processes)
parser.add_argument("--early-exit-layers", type=str, default="-1")
parser.add_argument("--parallel", action="store_true")
parser.add_argument("--total-shard", type=int, default=8)
parser.add_argument("--shard-id", type=int, default=None)
parser.add_argument("--max-new-tokens", type=int, default=256)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.9)
parser.add_argument("--repetition_penalty", type=float, default=None)
parser.add_argument("--relative_top", type=float, default=0.1)
parser.add_argument("--do_sample", action="store_true")
parser.add_argument("--do_shuffle", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--retry", type=int, default=1)
args = parser.parse_args()
model_name = args.model_name
num_gpus = args.num_gpus
device = args.device
# Get test file
if not '.jsonl' in args.data_path:
fp = os.path.join(args.data_path, 'gsm8k_test.jsonl')
elif os.path.exists(args.data_path):
fp = args.data_path
else:
raise ValueError(f"Invalid data path: {args.data_path}")
if not os.path.exists(fp):
download_url(
'https://raw.githubusercontent.com/openai/'
'grade-school-math/2909d34ef28520753df82a2234c357259d254aa8/'
'grade_school_math/data/test.jsonl', args.data_path)
os.rename(os.path.join(args.data_path, 'test.jsonl'), fp)
list_data_dict = load_jsonl(fp, instruction='question', output='answer')
if args.parallel:
chunk_size = len(list_data_dict) // args.total_shard
list_data_dict = list_data_dict[args.shard_id * chunk_size: (args.shard_id + 1) * chunk_size]
if args.debug:
list_data_dict = list_data_dict[:10]
llm = DoLa(model_name, device, num_gpus, args.max_gpu_memory)
llm.set_stop_words(["Q:", "\end{code}"])
early_exit_layers = [int(x) for x in args.early_exit_layers.split(',')]
if len(early_exit_layers) == 1:
print("MODE: naive decoding from the last layer", flush=True)
mode = "baseline"
mature_layer = None
premature_layer = None
candidate_premature_layers = None
if args.repetition_penalty is None:
args.repetition_penalty = 1.0
elif len(early_exit_layers) == 2:
print(f"MODE: DoLa-static decoding with mature layer: {early_exit_layers[1]} and premature layer: {early_exit_layers[0]}")
mode = "dola-static"
mature_layer = early_exit_layers[1]
premature_layer = early_exit_layers[0]
candidate_premature_layers = None
if args.repetition_penalty is None:
args.repetition_penalty = 1.2
else:
print(f"MODE: DoLa decoding with mature layer: {early_exit_layers[-1]} and premature layers: {early_exit_layers[:-1]}")
mode = "dola"
mature_layer = early_exit_layers[-1]
premature_layer = None
candidate_premature_layers = early_exit_layers[:-1]
premature_layer_dist = {l:0 for l in candidate_premature_layers}
if args.repetition_penalty is None:
args.repetition_penalty = 1.2
answers = []
result_dict = {'is_correct': [], 'model_answer': [], 'model_completion': [], 'full_input_text': []}
for sample in tqdm(list_data_dict):
input_text = build_prompt(sample['instruction'], N_SHOT, COT_FLAG, args.do_shuffle)
generate_kwargs = dict(max_new_tokens=args.max_new_tokens, do_sample=args.do_sample, top_p=args.top_p, top_k=args.top_k, temperature=args.temperature, repetition_penalty=args.repetition_penalty, mode=mode, mature_layer=mature_layer, premature_layer=premature_layer, candidate_premature_layers=candidate_premature_layers, relative_top=args.relative_top)
model_completion, c_dist = llm.generate(input_text, **generate_kwargs)
if mode == "dola":
for k, v in c_dist.items():
premature_layer_dist[k] += v
model_answer = clean_answer(model_completion)
is_cor = is_correct(model_answer, sample['output'])
answers.append(is_cor)
result_dict['is_correct'].append(is_cor)
result_dict['model_answer'].append(model_answer)
result_dict['model_completion'].append(model_completion)
result_dict['full_input_text'].append(input_text)
if DEBUG:
print(f'Full input_text:\n{input_text}\n\n')
print(f'Question: {sample["instruction"]}\n\n'
f'Answers: {extract_answer_from_output(sample["output"])}\n\n'
f'Model Answers: {model_answer}\n\n'
f'Model Completion: {model_completion}\n\n'
f'Is correct: {is_cor}\n\n')
print(f'Num of total question: {len(answers)}, '
f'correct num: {sum(answers)}, '
f'correct rate: {float(sum(answers))/len(answers)}.')
if mode == "dola"and args.debug:
total_tokens = sum(premature_layer_dist.values())
if total_tokens > 0:
for l in candidate_premature_layers:
print('Premature layer {0} was used {1} times, {2}%'.format(l, premature_layer_dist[l], round(premature_layer_dist[l] / total_tokens * 100, 2)))
# save results to a json file
model_tag = model_name.split('/')[-1] if model_name[-1] != '/' else model_name.split('/')[-2]
output_file = args.output_path if args.shard_id is None else (args.output_path+"_"+str(args.shard_id)+".json")
with open(output_file, 'w') as f:
json.dump(result_dict, f)
print(f"{float(sum(answers))/len(answers)}")