-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNdataset.py
69 lines (56 loc) · 2.18 KB
/
NNdataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Packages and modules
import numpy as np
from torch.utils.data import Dataset, random_split
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
"""
Characterizes a Dataset for PyTorch
Parameters
----------
data: pandas dataframe
It contains all the continuous, categorical and output columns to be used.
cat_cols: list of strings
Names of the categorical columns in the dataframe. These columns will be passed
trought the embedding layers in the model. They must be labeled encoded beforehand.
output_col: string
The name of the output variable column in the data provided
"""
# Number of samples
self.n = data.shape[0]
# Output part of the dataframe
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
# Selecting the categorical and continuous columns
self.cat_cols = cat_cols if cat_cols else []
self.cont_cols = [col for col in data.columns if col not in self.cat_cols + [output_col]]
# Continuous part of the dataframe
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
# Categorical part of the dataframe
if self.cat_cols:
self.cat_X = data[cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
"""
Returns the total number of samples.
"""
return self.n
def __getitem__(self, idx):
"""
Generates one sample of data.
"""
return {"target": self.y[idx], "cont_data": self.cont_X[idx], "cat_data": self.cat_X[idx]}
def get_splits(self, split=0.33):
"""
Get indexes for train and validation rows
"""
# Determines size
test_size = round(split * self.n)
train_size = self.n - test_size
# calculate the split
return random_split(self, [train_size, test_size])