-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgradient_computation.py
216 lines (193 loc) · 8.76 KB
/
gradient_computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import torch
import random
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from importlib.metadata import version
from transformers import AdamW
from datasets import load_dataset
import torch.nn as nn
from tqdm import tqdm
import argparse
import os
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
def find_layers(module, layers=[nn.Linear], name=''):
"""
Recursively find the layers of a certain type in a module.
Args:
module (nn.Module): PyTorch module.
layers (list): List of layer types to find.
name (str): Name of the module.
Returns:
dict: Dictionary of layers of the given type(s) within the module.
"""
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(
child, layers=layers, name=name + '.' + name1 if name != '' else name1
))
return res
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
# Wrapper for tokenized input IDs
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
# Load and process wikitext2 dataset
def get_wikitext2(nsamples, seed, seqlen, tokenizer):
# Load train and test datasets
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
# Encode datasets
trainenc = tokenizer(" ".join(traindata['text']), return_tensors='pt')
testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt')
# Generate samples from training set
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
# tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
# Load and process c4 dataset
def get_c4(nsamples, seed, seqlen, tokenizer):
# Load train and validation datasets
print("trying to load allenai-c4 dataset........")
traindata = load_dataset('allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train')
valdata = load_dataset('allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')
# Generate samples from training set
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] > seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
# tar[:, :-1] = -100
trainloader.append((inp, tar))
# Prepare validation dataset
valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
valenc = valenc.input_ids[:, :(256 * seqlen)]
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
# Function to select the appropriate loader based on dataset name
def get_loaders(name, nsamples=128, seed=0, seqlen=2048, tokenizer=None):
if 'wikitext2' in name:
return get_wikitext2(nsamples, seed, seqlen, tokenizer)
if "c4" in name:
return get_c4(nsamples, seed, seqlen, tokenizer)
def get_llm(model, cache_dir="llm_weights"):
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
cache_dir=cache_dir,
low_cpu_mem_usage=True,
device_map="auto"
)
print("printing gpu allocation for all the layers")
print(model.hf_device_map)
model.seqlen = 2048
return model
class gradient_computation:
def __init__(self, model, scale):
self.model = model
self.gradients_l1 = dict()
self.gradients_l2 = dict()
self.nsample = 0
self.scale = scale
self.device = torch.device("cpu")
self.gradients_init()
def gradients_init(self):
layers = self.model.model.layers
for i in tqdm(range(len(layers)), desc=f"initializing the gradient list ...."):
layer = layers[i]
subset = find_layers(layer)
for name in subset:
indexed_name = f"{name}_layer_{i}"
self.gradients_l1[indexed_name] = torch.zeros_like(subset[name].weight, dtype=torch.float16, device=self.device)
self.gradients_l2[indexed_name] = torch.zeros_like(subset[name].weight, dtype=torch.float32, device=self.device)
def update_gradient(self, model, nsample):
assert nsample - self.nsample == 1, "number of samples must be incremented by 1"
layers = model.model.layers
for i in tqdm(range(len(layers)), desc=f"updating the gradient of sample no: {self.nsample}"):
layer = layers[i]
subset = find_layers(layer)
for name in subset:
indexed_name = f"{name}_layer_{i}"
if subset[name].weight.grad is None:
print(f"Error: {name} has none gradient")
if subset[name].weight.grad is not None:
assert subset[name].weight.requires_grad == True, f"Required grad must be true ( {name}: {subset[name].weight.requires_grad})"
grad = subset[name].weight.grad.detach().clone().to(dtype=torch.float32) # Cast to float32
all_zero = (torch.abs(grad)==0).all()
assert int(all_zero) == 0, f"all the elements in the tensor are zero.: {all_zero}"
assert self.gradients_l1[indexed_name].shape == grad.shape, "shape mismatch"
self.gradients_l1[indexed_name] = self.gradients_l1[indexed_name] + torch.abs(grad*self.scale).to(device=self.device).to(dtype=torch.float16)
self.gradients_l2[indexed_name] = self.gradients_l2[indexed_name] + torch.abs((grad*self.scale)**2).to(device=self.device)
self.nsample = nsample
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--nsamples', type=int, default=128, help='no of samples used')
parser.add_argument('--scale', type=int, default=100, help='no of samples used')
parser.add_argument('--llama_version', type=int, default=2, help='llama version used')
parser.add_argument('--model', type=str, help='model to used') ## change
args = parser.parse_args()
print(f"Obtaining gradients for no of samples {args.nsamples}, scale {args.scale}")
model_args = args.model
cache_dir_args = "llm_weights"
model = get_llm(model_args, cache_dir_args)
if args.llama_version == 2:
tokenizer = AutoTokenizer.from_pretrained(model_args, use_fast=False)
else:
tokenizer = LlamaTokenizer.from_pretrained(model_args, use_fast=False) ## change
layers = model.model.layers
# device=torch.device("cuda:0")
if "model.embed_tokens" in model.hf_device_map:
device = model.hf_device_map["model.embed_tokens"]
print("loading calibdation data")
nsamples=args.nsamples
seed=0
dataloader, _ = get_loaders("c4",nsamples=nsamples,seed=seed,seqlen=2048,tokenizer=tokenizer)
print("dataset loading complete")
optimizer = AdamW(model.parameters(), lr=0.01, eps=0.01)
optimizer.zero_grad()
scale = args.scale
grad_up = gradient_computation(model, scale)
nsample = 0
model.train()
for input_ids, labels in dataloader:
nsample+=1
print("making gradient computation on sample: ", nsample)
input_ids = input_ids.to(device)
labels = labels.to(device)
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
print("Printing the loss:", loss)
loss.backward()
grad_up.update_gradient(model, nsample)
optimizer.zero_grad()
print("Done")
gradients_l2 = grad_up.gradients_l2
for name in gradients_l2:
grad_sqrt = torch.sqrt(gradients_l2[name])
gradients_l2[name] = grad_sqrt.to(dtype=torch.float16)
model_name = os.path.basename(args.model)
if not os.path.exists(f'./gradients/llama{args.llama_version}'):
os.makedirs(f'./gradients/llama{args.llama_version}')
with open(f'./gradients/llama{args.llama_version}/gradients_aggregrate_norm_l2_model_{model_name}.pth', 'wb') as f:
torch.save(gradients_l2, f)
with open(f'./gradients/llama{args.llama_version}/gradients_aggregrate_norm_l1_model_{model_name}.pth', 'wb') as f:
torch.save(grad_up.gradients_l1, f)