Skip to content

Latest commit

 

History

History
214 lines (197 loc) · 7.21 KB

README.md

File metadata and controls

214 lines (197 loc) · 7.21 KB

sign-language-summer-research

This is a repo that contains the setup for the WLASL dataset and AUTSL dataset to be used with tools available with MMAction2. Clone recursively for mmaction2:

git clone --recurse https://github.com/UoA-CARES/sign-language-summer-research.git

WLASL-2000

Directory

After downloading and extracting the dataset, the directory should look like below:

sign-language-summer-research
├── data
│   ├── autsl
│   │   └── ...
│   └── wlasl
│       ├── rawframes
│       │   ├── test
│       │   │   └── 00623
│       │   │       ├── img_00001.jpg
│       │   │       └── ...
│       │   ├── train
│       │   │   └── 00623
│       │   │       ├── img_00001.jpg
│       │   │       └── ...
│       │   └── val
│       │       └── 00626
│       │           ├── img_00001.jpg
│       │           └── ...
│       ├── test_annotations.txt
│       ├── train_annotations.txt
│       ├── val_annotations.txt
│       ├── wlasl2000-resized.zip
│       └── wlasl-complete
│           └── ...
├── setup
│   └── autsl
│       └── ...
│   └── wlasl
│       ├── setup.sh
│       └── ...
├── mmaction2
│   └── ...
├── experiments
│   ├── wlasl
│   │   ├── augmentations
│   │   │    └── ...
│   │   └── ...
│   └── autsl
│       └── ...
├── README.md
├── tools
│   ├── autsl
│   │    └── ...
│   └── wlasl
│       ├── build_labels.py
│       ├── create_annotations.ipynb
│       ├── fix_missing.py
│       ├── json_fixer.ipynb
│       ├── split_videos.ipynb
│       └── split_videos.py
└── work_dirs
    └── ...

In-depth information about how to set up each dataset can be found in the README.md in their respective setup/<dataset> folder.

Requirements

Setting up a conda environment

Install MiniConda

The following instructions are for Linux. For other operating systems, download and install from here.

curl -sL \
  "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > \
 "Miniconda3.sh"

Install the .sh file.

bash Miniconda3.sh

Remove the installer:

rm Miniconda3.sh

Creating a virtual environment

Run the following commands to create a virtual environment and to activate it:

conda create -n mmsign python=3.8 -y
conda activate mmsign

Make sure to run conda activate mmsign before running any of the scripts in this repo.

Installing Dependencies

Install PyTorch by running the following:

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

Note: To fully utilise cuda, make sure to have nvidia graphics drivers installed and running. To check, run nvidia-smi.

Clone the repo if not done already and go inside the repo:

git clone --recurse https://github.com/UoA-CARES/sign-language-summer-research.git
cd sign-language-summer-research

To install all the other modules, navigate to the root directory of this repo after cloning and run the following:

pip install -r requirements.txt

Install mmcv:

pip install -U openmim
mim install mmcv-full

Assuming current directory is the root of the repository, install mmaction2 from source:

cd mmaction2
pip install -r requirements/build.txt
pip install -v -e .  
cd ..

This one is optional but to use the conda environment in Notebook, run:

conda install ipykernel -y
ipython kernel install --user --name=mmsign

Setup

Downloading and extracting the dataset

In order to download the dataset, an existing kaggle token needs to be set up. All the data-acquisition and extraction is handled by setup.sh. From the setup/<dataset> directory of the repo, run:

bash setup.sh

For WLASL, subsets can be chosen by changing the name of the json variable inside setup.sh. Options include nslt_100.json, nslt_300.json, nslt_1000.json, and nslt_2000.json. More details can be found here. Note: If on any other operating system than Linux/Mac, open the bash file and run each command one by one.

This bash script will download the dataset from kaggle (Kaggle token needs to be set up for this), extract and store the dataset under the data directory.

Setting up WandB

Log in to WandB account by running the following on terminal:

wandb login

To link the model training with WandB, copy the following code snippet and paste at the end of the config file.

# Setup WandB
log_config = dict(interval=10, hooks=[
    dict(type='TextLoggerHook'),
    dict(type='WandbLoggerHook',
         init_kwargs={
             'entity': "cares",
             'project': "wlasl-100"
         },
         log_artifact=True)
]
)

Since most configs are pre-setup with wandb, to undo them, replace the log_config with the following:

log_config = dict(
    interval=20,
    hooks=[
        dict(type='TextLoggerHook'),
    ])

Training

Start training by running the following template:

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: Train a pretrained 3CD model on wlasl with periodic validation.

python mmaction2/tools/train.py models/c3d/c3d_16x16x1_sports1m_wlasl100_rgb.py --validate --seed 0 --deterministic --gpus 1

Testing

Use the following template to test a model:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Examples and more information can be found here.

Citations

@misc{2020mmaction2,
    title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
    author={MMAction2 Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
    year={2020}
}
@inproceedings{li2020transferring,
 title={Transferring cross-domain knowledge for video sign language recognition},
 author={Li, Dongxu and Yu, Xin and Xu, Chenchen and Petersson, Lars and Li, Hongdong},
 booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
 pages={6205--6214},
 year={2020}
}