-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsemsimcalc.py
684 lines (505 loc) · 16 KB
/
semsimcalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
#!/usr/bin/python
# See http://bib.oxfordjournals.org/content/13/5/569.full
# For definitions
import sys
import time
import networkx as nx
import math
import pickle
import numpy
# Helper functions
def announce(message):
""" Timestamped output to stdout """
print time.strftime('%H:%M'),message
sys.stdout.flush()
def open_or_abort(filename, option='r'):
""" Output error message to stderr if file opening failed """
try:
newfile = open(filename, option)
except IOError:
sys.stderr.write("Could not open {} -- Aborting\n".format(filename))
raise IOError
return newfile
# NOTE(tfs): Accepted GO file format:
#
# ! comments
#
# [Term]
# id: GO_term
# ...
# is_a: GO_term
# is_a: GO_term
#
# [Term]
# ...
#
# [Typedef]
#
# The [Typedef] tag signals end of GO terms.
# It is necessary in the current implementation
#
def parse_go_file(go_file_name):
""" Parses and returns (does not natively store) GO data """
go_file = open_or_abort(go_file_name)
# Setup
go_file.seek(0)
go_graph = nx.DiGraph()
alt_ids = {}
go_term = ''
parents = []
is_obsolete = False
# Don't start paying attention until we see '[Term]'
valid_to_read = False
# Main parsing loop
for line in go_file:
# Only if we're within a '[Term]' header
if valid_to_read:
if line.startswith('alt_id:'):
alt_id = line.strip()[8:]
alt_ids[alt_id] = go_term
elif line.startswith('id:'):
# Only log if the entry is valid
if not is_obsolete:
if go_term != '':
# Only add connected node
if len(parents) > 0:
go_graph.add_node(go_term)
for parent in parents:
if parent != '':
go_graph.add_edge(parent, go_term)
# Reset regardless of logging status
parents = []
is_obsolete = False
go_term = line.strip()[4:]
elif line.startswith('is_a:'):
# Store is_a as a parent
parents.append(line.split('!')[0].strip()[6:])
elif line.startswith('is_obsolete: true'):
# Do not store the data under this '[Term]' header
is_obsolete = True
elif line.startswith('[Typedef]'):
# Write if the previous entries were valid
# Only log if the entry is valid
if not is_obsolete:
if go_term != '':
# Only add connected node
if len(parents) > 0:
go_graph.add_node(go_term)
for parent in parents:
if parent != '':
go_graph.add_edge(parent, go_term)
# Reset regardless of logging status
parents = []
is_obsolete = False
go_term = '' # No valid ID to reset with under a '[Typedef]' header
# Stop paying attention
valid_to_read = False
else:
if '[Term]' in line:
# Start paying attention
valid_to_read = True
go_file.close()
return (go_graph, alt_ids)
# NOTE(tfs): Accepted AC file format:
#
# -
# protein_name
# GO_term
# GO_term
# GO_term
# -
#
def parse_annotation_corpus(ac_file_name, alt_ids=None):
"""
Parses annotation corpus. Returns a dictionary of { gene: [terms] }.
If a term is a key in alt_ids, saves the associated value instead (if provided).
"""
ac_file = open_or_abort(ac_file_name)
# Setup
prot_to_gos = {}
go_to_prots = {}
ac_file.seek(0)
curr_prot = ''
curr_gos = []
new_entry = True
for line in ac_file:
# Start information from new entry
if line.startswith('-'):
# Only update if we have enough information for the last entry
if curr_prot != '' and len(curr_gos) > 0:
# Update prot_to_gos
if curr_prot in prot_to_gos:
prot_to_gos[curr_prot] = prot_to_gos[curr_prot] + curr_gos
else:
prot_to_gos[curr_prot] = curr_gos
# Update go_to_prots
for go in curr_gos:
if go in go_to_prots:
go_to_prots[go].append(curr_prot)
else:
go_to_prots[go] = [curr_prot]
# Reset, regardless of whether or not we updated
curr_prot = ''
curr_gos = []
new_entry = True
# If we've just started looking at a new entry, parse as protein name
# DON'T do this if we're still on the delimiter line ('-')
elif new_entry:
curr_prot = line.strip().strip(';')
new_entry = False
# Otherwise, parse as GO term
else:
if ("GO:" in line):
new_go = line.strip().strip(';')
if alt_ids is not None:
if new_go in alt_ids:
new_go = alt_ids[new_go]
curr_gos.append(line.strip().strip(';'))
ac_file.close()
return (prot_to_gos, go_to_prots)
# Load a saved SemSimCalculator
def load_semsimcalc(saved_path):
"""
Loads (unpickles) a saved SemSimCalculator
"""
return pickle.load(open(saved_path, 'rb'))
###############################
### SemSim_Calculator class ###
###############################
class SemSimCalculator():
"""
Stores GO and annotation corpus data internally.
Calculates different semantic similarity metrics.
"""
def __init__(self, go_file_name, ac_file_name):
""" Initialize using GO and annotation corpus files (pass in file name, not file object) """
self._go_graph, self._alt_list = parse_go_file(go_file_name)
self._prot_to_gos, self._go_to_prots = parse_annotation_corpus(ac_file_name, self._alt_list)
self._proteins = [x[0] for x in self._prot_to_gos.items()]
self._num_proteins = len(self._proteins)
self._ic_vals = {} # For memoizing IC values (they are unchanging given an ontology and annotation corpus)
self._go_terms = self._go_graph.nodes()
self._mica_store = None
def link_mica_store(self, mica_store):
""" Stores a reference to a MicaStore instance """
self._mica_store = mica_store
def unlink_mica_store(self):
""" Removes link to a MicaStore instance (sets to None) """
self._mica_store = None
def save(self, filepath):
"""
Saves (pickles) to filepath
NOTE: Does not save reference to MicaStore instance (as this will likely be broken on load)
"""
# Do not store reference to MicaStore instance
temp = self._mica_store
self._mica_store = None
pickle.dump(self, open(filepath, 'wb'))
# Restore _mica_store reference
self._mica_store = temp
def get_go_graph(self):
""" Return nx graph for GO """
return nx.DiGraph(self._go_graph)
def get_alt_list(self):
""" Return alt_list """
return dict(self._alt_list)
def get_ptg(self):
""" Return copy of prot_to_gos """
return dict(self._prot_to_gos)
def get_gtp(self):
""" Return copy of go_to_prots """
return dict(self._go_to_prots)
def get_proteins(self):
""" Return copy of proteins """
return list(self._proteins)
def get_num_proteins(self):
""" Return number of proteins """
return int(self._num_proteins)
def get_ic_vals(self):
"""
Return all stored ic_vals.
Not all values are guaranteed to exist.
Consider running precompute_ic_vals first.
"""
return dict(self._ic_vals)
def get_go_terms(self):
""" Return list of GO terms """
return list(self._go_terms)
def get_mica_store(self):
""" Returns copy of mica_store """
return self._mica_store
def calc_term_prob(self, term):
""" Probability of term or desc(term) to occur as a label within the annotation corpus """
if term == None or (not term in self._go_graph):
return None
# Find all descendants of term, including term
terms = nx.algorithms.dag.descendants(self._go_graph, term)
terms.add(term)
annotated_proteins = {}
# Mark any protein labeled with term or a descendant of term
for term in terms:
if term in self._go_to_prots:
for prot in self._go_to_prots[term]:
annotated_proteins[prot] = True
prob = float(len(annotated_proteins.items())) / float(self._num_proteins)
return prob
def calc_conditional_prob(self, term, condition):
"""
Probability that term or desc(term) appears
as label in annotaiton corpus,
given that condition appears as a term.
"""
if term == None or (not term in self._go_graph):
return None
# Find all descendants of condition, including condition
cond_terms = nx.algorithms.dag.descendants(self._go_graph, condition)
cond_terms.add(condition)
# Find all descendants of term, including term
terms = nx.algorithms.dag.descendants(self._go_graph, term)
terms.add(term)
conditional_proteins = {}
for cond_term in cond_terms:
if cond_term in self._go_to_prots:
for prot in self._go_to_prots[cond_term]:
conditional_proteins[prot] = True
restricted_term_proteins = {}
for r_term in terms:
if r_term in self._go_to_prots:
for prot in self._go_to_prots[r_term]:
if prot in conditional_proteins.keys():
restricted_term_proteins[prot] = True
if len(conditional_proteins.items()) == 0:
return None
else:
prob = float(len(restricted_term_proteins.items()))
prob = prob / float(len(conditional_proteins.items()))
return prob
def IC(self, term):
""" Information content: IC(c) = -log(p(c)) """
# Check if IC has been computed for term already
if not (term in self._ic_vals):
# If not seen before, compute IC
prob = self.calc_term_prob(term)
if prob == 0 or prob == None:
self._ic_vals[term] = None
return None
else:
ic = (-1) * math.log(prob)
self._ic_vals[term] = ic # Memoize IC value
return ic
else:
# If seen before, return memoized value
return self._ic_vals[term]
def conditional_IC(self, term, condition):
""" Conditional Information Content: cIC(t | c) = -log(p(t | c)) """
# Too many values to memoize
cond_prob = self.calc_conditional_prob(term, condition)
if cond_prob == 0 or cond_prob == None:
return None
else:
cic = (-1) * math.log(cond_prob)
return cic
def precompute_ic_vals(self):
""" Compute and store IC values for all ontology terms """
for term in self._go_graph.nodes():
self.IC(term)
def MICA(self, left, right):
"""
Maximum Informative Common Ancestor:
MICA(t1, t2) = arg max, IC(tj)
tj in ancestors(t1, t2)
(returns a term, common ancestor of left and right)
NOTE: If a MicaStore instance is linked, first try querying the stored instance
"""
if not left in self._go_terms:
if left in self._alt_list:
left = self._alt_list[left]
else:
return None
if not right in self._go_terms:
if right in self._alt_list:
right = self._alt_list[right]
else:
return None
# Attempt lookup in linked MicaStore instance
if (self._mica_store != None):
mica = self._mica_store.mica_lookup(left, right)
if (mica != None) and (mica != '') and (mica != 'None'):
return mica
#if (mica == ''):
# MICA is stored, but does not exist (None is a possible MICA value)
# return None
#else:
# return mica
# Fall through and calculate MICA
# Find common ancestors as intersection of two ancestor sets
# NOTE(tfs): Python sets are very slow. List comprehensions are faster
left_ancs = nx.algorithms.dag.ancestors(self._go_graph, left)
left_ancs.add(left)
right_ancs = nx.algorithms.dag.ancestors(self._go_graph, right)
right_ancs.add(right)
ancestors = [a for a in left_ancs if a in right_ancs]
# Edge case where left and right are the same. Treat left and right as a common ancestor
#if left == right:
# ancestors.append(left)
max_term = None
max_IC = 0
# Calculate IC for all ancestors; store maximum IC value and term
for ancestor in ancestors:
anc_IC = self.IC(ancestor)
if anc_IC != None and anc_IC > max_IC:
max_IC = anc_IC
max_term = ancestor
return max_term
def simRes(self, left, right):
"""
simRes(t1, t2) = IC[MICA(t1, t2)]
Returns a value (IC result)
"""
return self.IC(self.MICA(left, right))
def simLin(self, left, right):
"""
simLin(t1, t2) = [IC[MICA(t1, t2)]] / [IC(t1) + IC(t2)]
Returns a value
Currently untested
"""
leftIC = self.IC(left)
rightIC = self.IC(right)
if leftIC == None or rightIC == None:
return None
else:
return self.IC(self.MICA(left, right)) / (leftIC + rightIC)
def simJC(self, left, right):
"""
simJC(t1, t2) = 1 - IC(t1) + IC(t2) - 2xIC[MICA(t1, t2)]
Returns a value
Currently untested
"""
leftIC = self.IC(left)
rightIC = self.IC(right)
if leftIC == None or rightIC == None:
return None
else:
return 1 - self.IC(left) + self.IC(right) - (2*self.IC(self.MICA(left, right)))
def pairwise_average_term_comp(self, lefts, rights, metric):
"""
Compares each pair of terms in two sets or lists of terms.
Returns the average of these comparison scores.
Uses metric(left, right) to make each comparison.
metric must take in two ontology terms (left and right) and return a numeric score.
"""
total_score = 0
num_scores = 0
for left in lefts:
for right in rights:
new_score = metric(left, right)
# Count a new_score of None in the denominator, but treat it as a value of 0
# This mimics a dummy root node if there are multiple roots in the GO DiGraph
if new_score != None:
total_score += new_score
num_scores += 1
if total_score == 0:
return None
else:
return total_score / num_scores
def pairwise_max_term_comp(self, lefts, rights, metric):
"""
Compares each pair of terms in two sets or lists of terms.
Returns the maximum score found in these comparisons.
Uses metric(left, right) to make each comparison.
metric must take in two ontology terms (left and right) and return a numeric score.
"""
if (len(lefts) == 0) or (len(rights) == 0):
return None
max_score = 0
for left in lefts:
for right in rights:
temp_score = metric(left, right)
if temp_score != None and temp_score > max_score:
max_score = temp_score
return max_score
def average_protein_comp(self, left_prot, right_prot, metric):
"""
Looks up all go terms for left_prot and right_prot.
Uses pairwise_average_term_comp to compare the above sets of terms.
metric must take in two ontology terms (left and right) and return a numeric score.
"""
left_terms = self._prot_to_gos[left_prot]
right_terms = self._prot_to_gos[right_prot]
return self.pairwise_average_term_comp(left_terms, right_terms, metric)
def max_protein_comp(self, left_prot, right_prot, metric):
"""
Looks up all terms for left_prot and right_prot.
Uses pairwise_max_term_comp to compare the above sets of terms.
metric must take in two ontology terms (left and right) and return a numeric score.
"""
left_terms = []
right_terms = []
if (left_prot in self._prot_to_gos):
left_terms = self._prot_to_gos[left_prot]
if (right_prot in self._prot_to_gos):
right_terms = self._prot_to_gos[right_prot]
return self.pairwise_max_term_comp(left_terms, right_terms, metric)
####################################
### End SemSim_Calculator class ###
####################################
#######################
### MicaStore class ###
#######################
class MicaStore():
"""
Loads a matrix of MICA scores (and a list of GO term indices),
Provides accessors for MICA score lookup
"""
def __init__(self, matrix_filename, ordering_filename):
"""
Loads the .npy numpy array, matrix_filename,
Stores the indices for each GO term in ordering_filename
"""
orderfile = open_or_abort(ordering_filename)
self._micas = numpy.load(matrix_filename)
self._go_to_index = {}
index = 0
for line in orderfile:
self._go_to_index[line.strip()] = index
index += 1
orderfile.close()
def get_micas(self):
"""
Returns reference to numpy matrix of MICA values.
NOTE: This is a large matrix
"""
return self._micas
def get_ordering(self):
"""
Returns copy of the dictionary mapping
GO terms to indices in the _micas matrix
"""
return dict(self._go_to_index)
def get_index(self, term):
"""
Returns the index of a GO term in the ordering of _micas (using _go_to_index)
Returns None if term is not in _go_to_index
"""
if (term in self._go_to_index):
return self._go_to_index[term]
else:
return None
def mica_lookup(self, left, right):
"""
If a MICA value can be found in _micas, return that MICA
Else, return None
"""
left_index = self.get_index(left)
right_index = self.get_index(right)
if (left_index != None) and (right_index != None):
mica = self._micas[left_index, right_index]
else:
mica = None
if (mica == ''):
# Indicates that the mica was found, but does not exist (None is a valid MICA value)
mica = ''
return mica
###########################
### End MicaStore class ###
###########################