-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFTAN_plot.py
executable file
·151 lines (130 loc) · 7 KB
/
FTAN_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/python
#-----------------------------------------------------------------------------------------------------------------------------------------
# Module Description:
# Functions to perform basic FTAN analysis on a signal. Will output a frequency/time plot rather than a group velocity/period plot (which is the default display for FTAN analysis).
# Method:
# 1. Get real + complex signal (by taking Hilbert transform of waveform signal) -> W(t) = w(t) + w_bar(t).i (w_bar is Hilbert transform of w, the real waveform observed)
# 2. Takes FFT of W(t) -> K(w) (in frequency domain)
# 3. Specify Gaussian filter function, in frequency domain -> G(w) (based upon bandwitdth and centre frequency)
# 4. Obtain the FTAN function for a particular centre frequency: Do inverse FFT of G(w).K(w) -> S(w_H,t)
# 5. Loop over range of central frequencies to obtain 2D FTAN array S(w_H_range,t)
# To get standard output, calculate time period from frequency (T = 1/f) and group velocity from time (U = interstation distance/time).
# Calculation based on method outlined in "Seismic surface waves in a laterally inhomogeneuos medium", p133-155.
# Dependencies:
# scipy, numpy, matplotlib
# Usage:
# See end of script or jupyter-notebook for example.
# Created by Tom Hudson, 13th July 2018
#-----------------------------------------------------------------------------------------------------------------------------------------
# Import neccessary modules:
from scipy.signal import hilbert
import numpy as np
import matplotlib.pyplot as plt
# Main script functions:
def ftan_plot(data, samp_rate, centre_freq_range=[], centre_freq_range_step=1.0, band_width_gau_filter=[1.25], plot_type="freq-time", event_stat_dist=0.0, vel_freq_plot_lims=[0.25,5.0], axes=None, log=False, cmap='viridis', return_ftan_data=False):
"""
Computes the frequency-time-analysis space of input data.
Based on method in "Seismic surface waves in a laterally inhomogeneous
meduim" (Keilis-Borok 1989) (P133-155).
Inputs:
data - Seismogram (1D array)
samp_rate - Sampling rate of the data (float)
centre_freq_range - Lower and upper bounds of frequency range ([float, float])
centre_freq_range_step - Size of freq. step (float)
band_width_gau_filter - Width of Gaussian band-pass filter ([float] or 1D array of floats for all centre freq values)
plot_type - The type of plot to plot (e.g. centre frequency vs. time or velocity vs. centre frequency) (specific string, e.g. "freq-time" or "vel-freq")
event_stat_dist - Event-station distance (used for calculating velocity for vel-freq figure, if specified by plot_type) (float)
vel_freq_plot_lims - Y-axis limits for vel-freq style plot ([float, float])
axes - Axes to plot to (matplotlib axis)
log - Plots with log scale on y axis if true (bool)
cmap - Color map to use
return_ftan_data - If True, will return ftan space data (bool)
Outputs:
axes - If axes given as input, will return axes
if return_ftan_data is True:
S_t_domain_array - FTAN space (of shape(len(time_array), len(centre_freqs_array)))
centre_freqs_array - Array of centre freq. values
time_array - Array of time values
"""
# Confirm that inputs are correct format:
samp_rate = float(samp_rate)
real_waveform = data
# Define optional parameters if not user-defined:
if len(centre_freq_range) ==0:
centre_freq_range = [1.0, samp_rate/2.]
# Get Hilbert transform of data:
# (outputs analytical solution with real and imaginary parts)
W_t_domain = hilbert(real_waveform)
# Take FFT of W(t) to find K(w):
K_f_domain = np.fft.fft(W_t_domain)/(len(W_t_domain)**0.5)
# And get frequency array associated with signal:
freqs = np.fft.fftfreq(len(W_t_domain), d=(1/samp_rate))
freqs_rad_per_s = freqs*2*np.pi
# Get FTAN output:
centre_freqs_array = np.arange(centre_freq_range[0], centre_freq_range[1], centre_freq_range_step)
time_array = np.linspace(0,len(real_waveform)/samp_rate,num=len(real_waveform))
# Specify array to store output FTAN data:
S_t_domain_array = np.zeros((len(real_waveform), len(centre_freqs_array))).astype(complex) # Array containing [time along trace x centre frequencies]
# Loop over central frequencies:
for i in np.arange(len(centre_freqs_array)):
w_H = centre_freqs_array[i]*2*np.pi # Current centre frequency to work on
# Get bandwidth for current central frequency:
try:
band_width_w_H_tmp = band_width_gau_filter[i]*2*np.pi # bandwidth in rad
except:
band_width_w_H_tmp = band_width_gau_filter[0]*2*np.pi # bandwidth in rad
# Get gaussian filter function in frequency domain, for specific centre frequency:
Gauss_filt_freq_domain = np.zeros(len(freqs_rad_per_s)).astype(complex)
for j in np.arange(len(freqs_rad_per_s)):
Gauss_filt_freq_domain[j] = (1/(((2*np.pi)**0.5)*band_width_w_H_tmp))*np.exp(-1*((freqs_rad_per_s[j] - w_H)**2)/(2*(band_width_w_H_tmp**2)))
# Then find FTAN values for current centre freq:
S_f_domain = Gauss_filt_freq_domain*K_f_domain
S_t_domain_array[:, i] = np.fft.ifft(S_f_domain)*(len(W_t_domain)**0.5) # Normalised by root(n)
# Plot results:
if plot_type=='freq-time':
if not axes:
fig = plt.figure()
ax = fig.add_subplot(111)
else:
ax = axes
if log:
ax.set_yscale('log')
y_grid, x_grid = np.meshgrid(centre_freqs_array,time_array)
col_mesh = ax.pcolormesh(x_grid, y_grid, np.absolute(S_t_domain_array), cmap=cmap)
ax.set_xlabel("Time (s)")
ax.set_ylabel("Centre frequency (Hz)")
if not axes:
plt.show()
elif plot_type=='vel-freq':
if not axes:
fig = plt.figure()
ax = fig.add_subplot(111)
else:
ax = axes
if log:
ax.set_yscale('log')
time_array[time_array==0] = 1e-12
vel_array = event_stat_dist/time_array
y_grid, x_grid = np.meshgrid(vel_array, centre_freqs_array)
col_mesh = ax.pcolormesh(x_grid, y_grid, np.transpose(np.absolute(S_t_domain_array)), cmap=cmap)
ax.set_xlabel("Centre frequency (Hz)")
ax.set_ylabel("Velocity ($m$ $s^{-1}$)")
ax.set_ylim(vel_freq_plot_lims)
if not axes:
plt.show()
# Return outputs:
if return_ftan_data:
if axes:
return axes, S_t_domain_array, centre_freqs_array, time_array
else:
return S_t_domain_array, centre_freqs_array, time_array
else:
if axes:
return axes
if __name__ == "__main__":
# Example of how to use function:
# Import data:
import obspy
data = obspy.read("S_waveform_E_2014_180_2037_event.m")[0].data # Data associated with trace of real waveform observed
# And run function:
ftan_plot(data, samp_rate=500.0, centre_freq_range=[4.0,50.0], centre_freq_range_step=0.5, band_width_gau_filter=[1.25], axes=None)