-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
55 lines (43 loc) · 1.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import sys
path = ... # add your path to the pycandle lib
sys.path.append(path)
import pycandle.supplementary as supplementary
import pycandle.dataloader as dataloader
import pycandle.nn as nn
import pycandle.optim as optim
import pycandle.functional as F
import pandas as pd
import numpy as np
class SimpleNet(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(784, 200)
self.act1 = F.Relu()
self.linear2 = nn.Linear(200, 50)
self.act2 = F.Relu()
self.linear3 = nn.Linear(50, 10)
self.sftmx = nn.Softmax()
def forward(self, x):
x = self.linear1(x)
x = self.act1(x)
x = self.linear2(x)
x = self.act2(x)
x = self.linear3(x)
x = self.sftmx(x)
return x
if __name__ == '__main__':
data = pd.read_csv('train.csv')
data = np.array(data)
data = data.astype(float)
np.random.shuffle(data)
data[:, 1:] = data[:, 1:] / 255
test_data = data[0:5000]
train_data = data[5000:42000]
test_batches = dataloader.DataBatcher(test_data, 64, True, flatten = True)
train_batches = dataloader.DataBatcher(train_data, 64, True, flatten = True)
model = SimpleNet()
loss_fn = nn.CrossEntropyLoss(l2_reg=0.)
optimizer = optim.ADAM(model, learning_rate=1e-3, momentum=0.5, ro = 0.5)
model = supplementary.train(model, train_batches, test_batches, loss_fn, optimizer, 2)
optimizer = optim.ADAM(model, learning_rate=5e-4, momentum=0.5, ro=0.1)
model = supplementary.train(model, train_batches, test_batches, loss_fn, optimizer, 3)