-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdebug.py
123 lines (89 loc) · 4.64 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#! /usr/bin/env python
import tensorflow as tf
import webbrowser
from lda import NeuralNet, Preprocessor, Info, ImagePlotter
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from lda.osHelper import generateModelDirectory
import os
import pdb
DISPLAY_THRESHOLD = 30
wordFrequencies = ['POS_WORD_FREQUENCY', 'NEG_WORD_FREQUENCY']
def debug(sentenceDB, category):
model_path = generateModelDirectory(category)
checkpoint_dir = os.path.join(model_path, 'checkpoints')
processor_dir = os.path.join(model_path, 'processor.pkl')
infoFile = os.path.join(model_path, 'info.json')
debugFile = os.path.join(model_path, 'debug.html')
f = open(debugFile, 'w')
f.write('<html><head><h1>DEBUG MODE</h1></head><body>')
f.write('<p>Category: %s </p>' % category)
f.write('<p>Sentence: %s </p>' % sentenceDB.sentence[0])
info = Info(infoFile)
preprocessor = Preprocessor().load(processor_dir)
vocabulary = preprocessor.vocabulary
sentenceDB['tokens'] = sentenceDB.sentence.apply(preprocessor.tokenize)
vocabIds = sentenceDB.tokens.apply(preprocessor.mapVocabularyIds).tolist()
sentenceDB['mapping'], sentenceDB['oov'] = zip(*vocabIds)
sentenceDB['mapping'] = sentenceDB.mapping.apply(preprocessor.padding)
plotter = ImagePlotter(False)
f.write('<h4><br>PREPROCESSING</br></h4>')
f.write('<p>%s</p>' % sentenceDB.sentence[0])
f.write('<p>%s</p>' % sentenceDB.tokens[0])
f.write('<h4><br>VOCAB MAPPING </br></h4>')
occurences = pd.DataFrame(columns=['word', 'POS', 'NEG'])
for ind, word in enumerate(sentenceDB.tokens[0]):
f.write('<tr><td>%s: </td> <td> %d </td></tr>' % (word, sentenceDB['mapping'][0][ind]))
try:
occurences = occurences.append({'word':word, 'POS':info.POS_WORD_FREQUENCY.get(word), 'NEG':info.NEG_WORD_FREQUENCY.get(word)}, ignore_index=True)
except:
occurences = occurences.append({'word':word, 'POS':-1, 'NEG':-1}, ignore_index=True)
occurences.fillna(0, inplace=True)
occurences.set_index('word', inplace=True)
plt.figure()
occurences.plot(kind='bar', title='Word Occurence In Training Data', color=['g', 'r'])
plt.savefig(model_path+'/'+'WordOccurence.jpg')
plt.close()
X_val = np.array(sentenceDB.mapping.tolist())
f.write('<p> Model Input: %s</p>' % X_val[0])
nn = NeuralNet()
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
with tf.Session() as sess:
nn.loadCheckpoint(graph, sess, checkpoint_dir)
f.write('<h4><br>RESULTS</br></h4>')
validationData = {nn.X: np.asarray(X_val), nn.pkeep:1.0}
prediction, probability = sess.run([nn.predictions, nn.probability], feed_dict=validationData)
f.write('<p> Prediction: %s </p>' % prediction[0])
f.write('<p> Probability: %s </p>' % probability[0])
sess.close()
f.write('<h4><br>MODEL ANALYSIS</br></h4><table>')
infoFeatures = ['TOTAL_NR_TRAIN_SENTENCES', 'NR_TRAIN_SENTENCES_POS', 'NR_TRAIN_SENTENCES_NEG']
for infoFeature in infoFeatures:
f.write('<tr><td>%s: </td> <td> %d </td></tr>' % (infoFeature, getattr(info, infoFeature)))
f.write('<tr><td>%s</td> <td> %s </td></tr>' % ('', ''))
f.write('<tr><td>%s</td> <td> %s </td></tr>' % ('', ''))
for wordFrequency in wordFrequencies:
f.write('<tr><td>%s: </td> <td> %d </td></tr>' % (wordFrequency, len(getattr(info,wordFrequency))))
f.write('<tr><td>DISPLAY_THRESHOLD: </td> <td> %d </td></tr>' % DISPLAY_THRESHOLD)
f.write('</table>')
for wordFrequency in wordFrequencies:
plotPath= model_path + '/' + wordFrequency + '.jpg'
frequency = getattr(info, wordFrequency)
frequency = [(v, k) for v,k in frequency.iteritems()]
frequency = sorted(frequency, key=lambda x:(-x[1], x[0]))
frequency = frequency[:DISPLAY_THRESHOLD]
frequency = dict(frequency)
plotter.barplot(frequency.values(), ylabel=frequency.keys(), log=False, title=wordFrequency, path=plotPath)
f.write('<img src="%s" alt="wrong path" height="580">' % (wordFrequency+'.jpg'))
f.write('<img src="%s" alt="wrong path" height="580">' % ('WordOccurence.jpg'))
f.write('<p> OOV: %s</p>' % info.OOV)
f.write('</body></html>')
f.close()
webbrowser.open_new_tab(debugFile)
if __name__=='__main__':
sentences = ['The accused has been charged with assault causing actual bodily harm contrary to section 275 of the crimes decree no 4'] #, 'He beats his wife', 'There is a non-contact order in place']
sentenceDB = pd.DataFrame({'sentence': sentences})
debug(sentenceDB, 'ICAAD_DV_sentences')