forked from danielzak/sl-quant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex3-self_learning_quant.py
311 lines (262 loc) · 10.9 KB
/
ex3-self_learning_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -*- coding: utf-8 -*-
from __future__ import print_function
import numpy as np
np.random.seed(1335) # for reproducibility
np.set_printoptions(precision=5, suppress=True, linewidth=150)
import pandas as pd
import backtest as twp
from matplotlib import pyplot as plt
from sklearn import metrics, preprocessing
from talib.abstract import *
from sklearn.externals import joblib
import Quandl
'''
Name: The Self Learning Quant, Example 3
Author: Daniel Zakrisson
Created: 30/03/2016
Copyright: (c) Daniel Zakrisson 2016
Licence: BSD
Requirements:
Numpy
Pandas
MatplotLib
scikit-learn
TA-Lib, instructions at https://mrjbq7.github.io/ta-lib/install.html
Keras, https://keras.io/
Quandl, https://www.quandl.com/tools/python
backtest.py from the TWP library. Download backtest.py and put in the same folder
/plt create a subfolder in the same directory where plot files will be saved
'''
#Load data
def read_convert_data(symbol='XBTEUR'):
if symbol == 'XBTEUR':
prices = Quandl.get("BCHARTS/KRAKENEUR")
prices.to_pickle('data/XBTEUR_1day.pkl') # a /data folder must exist
if symbol == 'EURUSD_1day':
#prices = Quandl.get("ECB/EURUSD")
prices = pd.read_csv('data/EURUSD_1day.csv',sep=",", skiprows=0, header=0, index_col=0, parse_dates=True, names=['ticker', 'date', 'time', 'open', 'low', 'high', 'close'])
prices.to_pickle('data/EURUSD_1day.pkl')
print(prices)
return
def load_data(test=False):
#prices = pd.read_pickle('data/OILWTI_1day.pkl')
#prices = pd.read_pickle('data/EURUSD_1day.pkl')
#prices.rename(columns={'Value': 'close'}, inplace=True)
prices = pd.read_pickle('data/XBTEUR_1day.pkl')
prices.rename(columns={'Open': 'open', 'High': 'high', 'Low': 'low', 'Close': 'close', 'Volume (BTC)': 'volume'}, inplace=True)
print(prices)
x_train = prices.iloc[-2000:-300,]
x_test= prices.iloc[-2000:,]
if test:
return x_test
else:
return x_train
#Initialize first state, all items are placed deterministically
def init_state(indata, test=False):
close = indata['close'].values
diff = np.diff(close)
diff = np.insert(diff, 0, 0)
sma15 = SMA(indata, timeperiod=15)
sma60 = SMA(indata, timeperiod=60)
rsi = RSI(indata, timeperiod=14)
atr = ATR(indata, timeperiod=14)
#--- Preprocess data
xdata = np.column_stack((close, diff, sma15, close-sma15, sma15-sma60, rsi, atr))
xdata = np.nan_to_num(xdata)
if test == False:
scaler = preprocessing.StandardScaler()
xdata = np.expand_dims(scaler.fit_transform(xdata), axis=1)
joblib.dump(scaler, 'data/scaler.pkl')
elif test == True:
scaler = joblib.load('data/scaler.pkl')
xdata = np.expand_dims(scaler.fit_transform(xdata), axis=1)
state = xdata[0:1, 0:1, :]
return state, xdata, close
#Take Action
def take_action(state, xdata, action, signal, time_step):
#this should generate a list of trade signals that at evaluation time are fed to the backtester
#the backtester should get a list of trade signals and a list of price data for the assett
#make necessary adjustments to state and then return it
time_step += 1
#if the current iteration is the last state ("terminal state") then set terminal_state to 1
if time_step + 1 == xdata.shape[0]:
state = xdata[time_step-1:time_step, 0:1, :]
terminal_state = 1
signal.loc[time_step] = 0
return state, time_step, signal, terminal_state
#move the market data window one step forward
state = xdata[time_step-1:time_step, 0:1, :]
#take action
if action == 1:
signal.loc[time_step] = 100
elif action == 2:
signal.loc[time_step] = -100
else:
signal.loc[time_step] = 0
#print(state)
terminal_state = 0
#print(signal)
return state, time_step, signal, terminal_state
#Get Reward, the reward is returned at the end of an episode
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
reward = 0
signal.fillna(value=0, inplace=True)
if eval == False:
bt = twp.Backtest(pd.Series(data=[x for x in xdata[time_step-2:time_step]], index=signal[time_step-2:time_step].index.values), signal[time_step-2:time_step], signalType='shares')
reward = ((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2])*bt.data['shares'].iloc[-1])
if terminal_state == 1 and eval == True:
#save a figure of the test set
bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
reward = bt.pnl.iloc[-1]
plt.figure(figsize=(3,4))
bt.plotTrades()
plt.axvline(x=400, color='black', linestyle='--')
plt.text(250, 400, 'training data')
plt.text(450, 400, 'test data')
plt.suptitle(str(epoch))
plt.savefig('plt/'+str(epoch)+'.png', bbox_inches='tight', pad_inches=1, dpi=72)
plt.close('all')
#print(time_step, terminal_state, eval, reward)
return reward
def evaluate_Q(eval_data, eval_model, price_data, epoch=0):
#This function is used to evaluate the performance of the system each epoch, without the influence of epsilon and random actions
signal = pd.Series(index=np.arange(len(eval_data)))
state, xdata, price_data = init_state(eval_data)
status = 1
terminal_state = 0
time_step = 1
while(status == 1):
#We start in state S
#Run the Q function on S to get predicted reward values on all the possible actions
qval = eval_model.predict(state, batch_size=1)
action = (np.argmax(qval))
#Take action, observe new state S'
new_state, time_step, signal, terminal_state = take_action(state, xdata, action, signal, time_step)
#Observe reward
eval_reward = get_reward(new_state, time_step, action, price_data, signal, terminal_state, eval=True, epoch=epoch)
state = new_state
if terminal_state == 1: #terminal state
status = 0
return eval_reward
#This neural network is the the Q-function, run it like this:
#model.predict(state.reshape(1,64), batch_size=1)
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.recurrent import LSTM
from keras.optimizers import RMSprop, Adam
tsteps = 1
batch_size = 1
num_features = 7
model = Sequential()
model.add(LSTM(64,
input_shape=(1, num_features),
return_sequences=True,
stateful=False))
model.add(Dropout(0.5))
model.add(LSTM(64,
input_shape=(1, num_features),
return_sequences=False,
stateful=False))
model.add(Dropout(0.5))
model.add(Dense(4, init='lecun_uniform'))
model.add(Activation('linear')) #linear output so we can have range of real-valued outputs
rms = RMSprop()
adam = Adam()
model.compile(loss='mse', optimizer=adam)
import random, timeit
start_time = timeit.default_timer()
read_convert_data(symbol='XBTEUR') #run once to read indata, resample and convert to pickle
indata = load_data()
test_data = load_data(test=True)
epochs = 100
gamma = 0.95 #since the reward can be several time steps away, make gamma high
epsilon = 1
batchSize = 100
buffer = 200
replay = []
learning_progress = []
#stores tuples of (S, A, R, S')
h = 0
#signal = pd.Series(index=market_data.index)
signal = pd.Series(index=np.arange(len(indata)))
for i in range(epochs):
if i == epochs-1: #the last epoch, use test data set
indata = load_data(test=True)
state, xdata, price_data = init_state(indata, test=True)
else:
state, xdata, price_data = init_state(indata)
status = 1
terminal_state = 0
#time_step = market_data.index[0] + 64 #when using market_data
time_step = 14
#while game still in progress
while(status == 1):
#We are in state S
#Let's run our Q function on S to get Q values for all possible actions
qval = model.predict(state, batch_size=1)
if (random.random() < epsilon): #choose random action
action = np.random.randint(0,4) #assumes 4 different actions
else: #choose best action from Q(s,a) values
action = (np.argmax(qval))
#Take action, observe new state S'
new_state, time_step, signal, terminal_state = take_action(state, xdata, action, signal, time_step)
#Observe reward
reward = get_reward(new_state, time_step, action, price_data, signal, terminal_state)
#Experience replay storage
if (len(replay) < buffer): #if buffer not filled, add to it
replay.append((state, action, reward, new_state))
#print(time_step, reward, terminal_state)
else: #if buffer full, overwrite old values
if (h < (buffer-1)):
h += 1
else:
h = 0
replay[h] = (state, action, reward, new_state)
#randomly sample our experience replay memory
minibatch = random.sample(replay, batchSize)
X_train = []
y_train = []
for memory in minibatch:
#Get max_Q(S',a)
old_state, action, reward, new_state = memory
old_qval = model.predict(old_state, batch_size=1)
newQ = model.predict(new_state, batch_size=1)
maxQ = np.max(newQ)
y = np.zeros((1,4))
y[:] = old_qval[:]
if terminal_state == 0: #non-terminal state
update = (reward + (gamma * maxQ))
else: #terminal state
update = reward
y[0][action] = update
#print(time_step, reward, terminal_state)
X_train.append(old_state)
y_train.append(y.reshape(4,))
X_train = np.squeeze(np.array(X_train), axis=(1))
y_train = np.array(y_train)
model.fit(X_train, y_train, batch_size=batchSize, nb_epoch=1, verbose=0)
state = new_state
if terminal_state == 1: #if reached terminal state, update epoch status
status = 0
eval_reward = evaluate_Q(test_data, model, price_data, i)
learning_progress.append((eval_reward))
print("Epoch #: %s Reward: %f Epsilon: %f" % (i,eval_reward, epsilon))
#learning_progress.append((reward))
if epsilon > 0.1: #decrement epsilon over time
epsilon -= (1.0/epochs)
elapsed = np.round(timeit.default_timer() - start_time, decimals=2)
print("Completed in %f" % (elapsed,))
bt = twp.Backtest(pd.Series(data=[x[0,0] for x in xdata]), signal, signalType='shares')
bt.data['delta'] = bt.data['shares'].diff().fillna(0)
print(bt.data)
unique, counts = np.unique(filter(lambda v: v==v, signal.values), return_counts=True)
print(np.asarray((unique, counts)).T)
plt.figure()
plt.subplot(3,1,1)
bt.plotTrades()
plt.subplot(3,1,2)
bt.pnl.plot(style='x-')
plt.subplot(3,1,3)
plt.plot(learning_progress)
plt.savefig('plt/summary'+'.png', bbox_inches='tight', pad_inches=1, dpi=72)
#plt.show()