This document is a guide for how to write Python bindings for the DeepStream Python API. For advanced use-cases such as writing bindings for your own custom data-structures to be attached to NvDsUserMeta as meta_data with a sample test app, please refer to CUSTOMUSERMETAGUIDE Python bindings are written using the pybind11 header library. Please review their documentation here. See below the table of contents for this guide:
- Python binding tutorial
Follow the instructions in README.md to install prerequisites and learn how to compile the bindings.
First, we present the directory stucture. Relevant subdirectories for writing bindings code are in bold.
. ├── docstrings ├── include │ ├── bind │ └── nvds ├── packaging ├── qemu_docker └── src
docstrings
- Docstrings are declared and defined in header files in this folder
. ├── docstrings ├── analyticsmetadoc.h ├── customdoc.h ├── functionsdoc.h ├── gstnvdsmetadoc.h ├── meta360doc.h ├── nvbufsurfacedoc.h ├── nvdsinferdoc.h ├── nvdsmetadoc.h ├── nvosddoc.h ├── opticalflowdoc.h ├── schemadoc.h └── trackermetadoc.h
include
- Bindings functions are declared in header files in this folder, separated by corresponding C API header files in<DEEPSTREAM ROOT>/sources/includes/
. ├── include ├── bind │ ├── bindanalyticsmeta.hpp │ ├── bindfunctions.hpp │ ├── bindgstnvdsmeta.hpp │ ├── bindmeta360.hpp │ ├── bindnvbufsurface.hpp │ ├── bindnvdsinfer.hpp │ ├── bindnvdsmeta.hpp │ ├── bindnvosd.hpp │ ├── bindopticalflow.hpp │ ├── bindschema.hpp │ ├── bind_string_property_definitions.h │ └── bindtrackermeta.hpp └── nvds │ └── nvds_360d_meta.h ├── pyds.hpp └── utils.hpp
src
- Bindings functions are defined in cpp source files in this folder, along with utilities and the definition of the pybind11 module.
. └── src └── custom_binding │ ├── bindcustom.cpp │ └── include │ ├── bindcustom.hpp │ └── custom_data.hpp ├── bindanalyticsmeta.cpp ├── bindfunctions.cpp ├── bindgstnvdsmeta.cpp ├── bindmeta360.cpp ├── bindnvbufsurface.cpp ├── bindnvdsinfer.cpp ├── bindnvdsmeta.cpp ├── bindnvosd.cpp ├── bindopticalflow.cpp ├── bindschema.cpp ├── bindtrackermeta.cpp ├── pyds.cpp └── utils.cpp
If adding missing bindings for an existing C API header file in PyDS bindings:
- Find the source file under
src
corresponding to the header of interest. - Add bindings code to file inside the existing function definition.
- Add docstrings to corresponding header file in
docstrings
, creating any new namespaces following the convention.
If adding bindings for an unbound C API header file which is not a part of PyDS bindings:
- Create a new header file under
include/bind/
following thebind{header_name}.hpp
file name convention. - Declare the bindings function in the header file following the
bind{header_name}
function name convention under thepydeepstream
namespace. - Create a new source file under
src
, following thebind{header_name}.cpp
file name convention. - Define the function previously declared in the new header file under the
pydeepstream
namespace. - Add a call to the function in
src/pyds.cpp
. - Create new header file for docstrings under
docstrings
following the{header_name}docs.h
convention. - Add docstrings to corresponding header file in
docstrings
, creating any new namespaces following the convention. - Add new bindings source file name to
../docs/bindings_file_list.txt
, run../docs/parse_bindings.py
, and update../docs/index.rst
with the newly generated toctree rst name accordingly.
For functions, add changes to ../docs/PYTHON_API/Methods/methodsdoc.rst
as needed.
Suppose that the bindings for the NvDsObjectMeta
data structure were not yet written, along with the associated bindings header include/bind/bindnvdsmeta.hpp
, source file src/bindnvdsmeta.cpp
, and docstrings.
First, we search the C API documentation for NvDsObjectMeta
and find the header file to which it belongs: nvdsmeta.h
. Following the bind{header_name}.hpp
convention, we create the file include/bind/bindnvdsmeta.hpp
with the following contents:
#include "pyds.hpp" // Include this "base" header file for all other dependencies
#include "../docstrings/pydocumentation.h" // Include the header file for the docstrings of this submodule
namespace py = pybind11;
namespace pydeepstream {
void bindnvdsmeta(py::module &m); // Declare the bindings function for this submodule
}
Then, we create the corresponding source file src/bindnvdsmeta.cpp
:
#include "bind_string_property_definitions.h"
#include "bindnvdsmeta.hpp" // Include the corresponding header file
namespace py = pybind11;
namespace pydeepstream {
void bindnvdsmeta(py::module &m) {} // Define the bindings function declared in the header file
}
We would put all bindings code for the C API declared in <DEEPSTREAM ROOT>/sources/includes/nvdsmeta.h
into this function.
Let's write our first binding! To bind a C-style struct, we make a call to pybind11's class_
. We pass in the module, the name of the struct, and the docstring for the struct:
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
.def(py::init<>()); // Constructor wrapper, empty for struct
}
With the above code, the NvDsObjectMeta
struct is now exposed to the Python API, but none of its data members are. To start, we may look directly in the header file for our struct, or, for more human readable information, we can look at the C API documentation for NvDsObjectMeta
:
Data Fields NvDsBaseMeta base_meta struct _NvDsObjectMeta * parent Holds a pointer to the parent NvDsObjectMeta. gint unique_component_id Holds a unique component ID that identifies the metadata in this structure. gint class_id Holds the index of the object class inferred by the primary detector/classifier. guint64 object_id Holds a unique ID for tracking the object. NvDsComp_BboxInfo detector_bbox_info Holds a structure containing bounding box parameters of the object when detected by detector. NvDsComp_BboxInfo tracker_bbox_info Holds a structure containing bounding box coordinates of the object when processed by tracker. gfloat confidence Holds a confidence value for the object, set by the inference component. gfloat tracker_confidence Holds a confidence value for the object set by nvdcf_tracker. NvOSD_RectParams rect_params Holds a structure containing positional parameters of the object processed by the last component that updates it in the pipeline. NvOSD_MaskParams mask_params Holds mask parameters for the object. NvOSD_TextParams text_params Holds text describing the object. gchar obj_label [MAX_LABEL_SIZE] Holds a string describing the class of the detected object. NvDsClassifierMetaList * classifier_meta_list Holds a pointer to a list of pointers of type NvDsClassifierMeta. NvDsUserMetaList * obj_user_meta_list Holds a pointer to a list of pointers of type NvDsUserMeta. gint64 misc_obj_info [MAX_USER_FIELDS] Holds additional user-defined object information. gint64 reserved [MAX_RESERVED_FIELDS] For internal use.
We can directly expose a POD data member using the class_::def_readwrite()
method. For example, to bind the first member base_meta, we pass in the name of the member along with a referennce to the member:
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
.def(py::init<>()); // Constructor wrapper, empty for struct
.def_readwrite("base_meta", &NvDsObjectMeta::base_meta);
}
Note that NvDsBaseMeta
does not need to be bound for this binding to work. However, we will be unable to access any of base_meta's data members as an NvDsBaseMeta
instance until the NvDsBaseMeta
data structure is also bound.
We can similarly bind the unique_component_id, class_id, object_id, detector_bbox_info, tracker_bbox_info, confidence, tracker_confidence, rect_params, mask_params, and text_params data members.
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
.def(py::init<>()); // Constructor wrapper, empty for struct
.def_readwrite("base_meta", &NvDsObjectMeta::base_meta);
.def_readwrite("unique_component_id",
&NvDsObjectMeta::unique_component_id)
.def_readwrite("class_id", &NvDsObjectMeta::class_id)
.def_readwrite("object_id", &NvDsObjectMeta::object_id)
.def_readwrite("detector_bbox_info",
&NvDsObjectMeta::detector_bbox_info)
.def_readwrite("tracker_bbox_info",
&NvDsObjectMeta::tracker_bbox_info)
.def_readwrite("confidence", &NvDsObjectMeta::confidence)
.def_readwrite("tracker_confidence",
&NvDsObjectMeta::tracker_confidence)
.def_readwrite("rect_params", &NvDsObjectMeta::rect_params)
.def_readwrite("mask_params", &NvDsObjectMeta::mask_params)
.def_readwrite("text_params", &NvDsObjectMeta::text_params);
}
The obj_label data member is a C-style string, i.e. an array of char
, and thus needs extra steps to be properly bound. Instead of using the class_::def_readwrite()
method, we make a call to class_::def_property()
, which allows us to define setter and getter functions for the data member.
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
...
.def_property("obj_label",
[](const NvDsObjectMeta &self)->std::string { // Getter function
return std::string(self.obj_label); // Return the char array as a std::string
},
[](TYPE &self, std::string str) { // Setter function
int strSize = str.size();
str.copy(self.obj_label, strSize); // Copy the string into the original array
},
py::return_value_policy::reference); // Set return value policy to "reference" so ownership remains in C++
}
Note that a return value policy must be set. In this case, we want to prevent the Python side from taking ownership, so use py::return_value_policy::reference
. Please see pybind11's documentation on return value policies for more details. See also the Note on strings.
The include/bind/bind_string_property_definitions.h
header file includes this macro definition:
#define STRING_CHAR_ARRAY(TYPE, FIELD) \
[](const TYPE &self)->std::string { \
return std::string(self.FIELD); \
}, \
[](TYPE &self, std::string str) { \
int strSize = str.size(); \
str.copy(self.FIELD, strSize); \
}, \
py::return_value_policy::reference
So, the bindings code may be re-written as:
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
...
.def_property("obj_label",
STRING_CHAR_ARRAY(NvDsObjectMeta, obj_label));
}
Next, consider the classifier_meta_list and obj_user_meta_list data members, of types NvDsClassifierMetaList*
and NvDsUserMetaList*
, respectively. By examining the nvdsmeta.h
header file, we see that NvDsClassifierMetaList
and NvDsUserMetaList
are typedefs for GList
. src/pyds.cpp
contains bindings code for the GList
class:
py::class_<GList>(m, "GList")
.def(py::init<>())
.def_readwrite("data", &GList::data)
.def_readwrite("next", &GList::next)
.def_readwrite("prev", &GList::prev);
So, we may directly bind the two data members using the class_::def_readwrite()
method:
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
...
.def_readwrite("classifier_meta_list",
&NvDsObjectMeta::classifier_meta_list)
.def_readwrite("obj_user_meta_list",
&NvDsObjectMeta::obj_user_meta_list);
}
Note that while in C, classifier_meta_list and obj_user_meta_list are pointers to Glist
objects, through the bindings, they are exposed to the Python API as the Glist
objects themselves and can be treated as such when retrieved. Please see any of the sample applications provided in this repo for example usage, such as deepstream-test1.
The C API binding for NvDsObjectMeta
is now completed, but we require an additional member function for practical usage. In DeepStream applications, NvDsObjectMeta
objects are retrieved from a GList
from an NvDsFrameMeta
object. We may access the data
in the GList
in the Python API due to our binding, but data
is an object of type capsule
in Python, which corresponds to void*
in C. So, after we retrieve the data
, we must be able to cast it to an NvDsObjectMeta
to use it. We enable this functionality by adding the following member function binding:
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
...
.def("cast",
[](void *data) { // Function definition
return (NvDsObjectMeta *) data; // Cast void* to NvDsObjectMeta*
},
py::return_value_policy::reference, // Ownership of return object must remain with C++
pydsdoc::nvmeta::ObjectMetaDoc::cast); // Docstring
}
Note again that though we return a pointer to an NvDsObjectMeta
, it will be exposed to the Python API as the NvDsObjectMeta
object itself. For example usage, see this snippet from deepstream-test1:
...
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.glist_get_nvds_frame_meta()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
#frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data)
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number=frame_meta.frame_num
num_rects = frame_meta.num_obj_meta
l_obj=frame_meta.obj_meta_list
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
#obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data)
obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1
obj_meta.rect_params.border_color.set(0.0, 0.0, 1.0, 0.0)
try:
l_obj=l_obj.next
except StopIteration:
break
...
Note also the GList
usage in the above snippet.
So, the final code for the binding of NvDsObjectMeta
looks like this:
void bindnvdsmeta(py::module &m) {
py::class_<NvDsObjectMeta>(m, "NvDsObjectMeta",
pydsdoc::nvmeta::ObjectMetaDoc::descr)
.def(py::init<>()); // Constructor wrapper, empty for struct
.def_readwrite("base_meta", &NvDsObjectMeta::base_meta);
.def_readwrite("unique_component_id",
&NvDsObjectMeta::unique_component_id)
.def_readwrite("class_id", &NvDsObjectMeta::class_id)
.def_readwrite("object_id", &NvDsObjectMeta::object_id)
.def_readwrite("detector_bbox_info",
&NvDsObjectMeta::detector_bbox_info)
.def_readwrite("tracker_bbox_info",
&NvDsObjectMeta::tracker_bbox_info)
.def_readwrite("confidence", &NvDsObjectMeta::confidence)
.def_readwrite("tracker_confidence",
&NvDsObjectMeta::tracker_confidence)
.def_readwrite("rect_params", &NvDsObjectMeta::rect_params)
.def_readwrite("mask_params", &NvDsObjectMeta::mask_params)
.def_readwrite("text_params", &NvDsObjectMeta::text_params)
.def_property("obj_label",
STRING_CHAR_ARRAY(NvDsObjectMeta, obj_label));
.def_readwrite("classifier_meta_list",
&NvDsObjectMeta::classifier_meta_list)
.def_readwrite("obj_user_meta_list",
&NvDsObjectMeta::obj_user_meta_list);
.def("cast",
[](void *data) {
return (NvDsObjectMeta *) data;
},
py::return_value_policy::reference,
pydsdoc::nvmeta::ObjectMetaDoc::cast);
}
Enumerators can be simply bound by following the example in the pybind11 documentation. For example, to bind NvDsInferDataType
in src/bindnvdsinfer.cpp
:
py::enum_<NvDsInferDataType>(m, "NvDsInferDataType",
pydsdoc::NvInferDoc::NvDsInferDataTypeDoc::descr)
.value("FLOAT", FLOAT,
pydsdoc::NvInferDoc::NvDsInferDataTypeDoc::FLOAT)
.value("HALF", HALF,
pydsdoc::NvInferDoc::NvDsInferDataTypeDoc::HALF)
.value("INT8", INT8,
pydsdoc::NvInferDoc::NvDsInferDataTypeDoc::INT8)
.value("INT32", INT32,
pydsdoc::NvInferDoc::NvDsInferDataTypeDoc::INT32)
.export_values();
There are three cases to consider for binding a function:
- Binding an already existing function in the C API
- Adding a new function to the PyDS module, not defined in the C API
- Adding a member function to a data struct (demonstrated in Adding a member function)
For the first two cases, the code should be added to the bindfunctions()
function defined in src/bindfunctions.cpp
. Member functions should be defined in the bindings for their class.
Consider the nvds_add_user_meta_to_obj
function defined in the C API:
void nvds_add_user_meta_to_frame (NvDsFrameMeta *frame_meta, NvDsUserMeta *user_meta ) Add a user meta user to a frame meta. Parameters [in] frame_meta A pointer to the frame meta to which user_meta is to be added. [in] user_meta A pointer to the user meta to be added to frame_meta.
This can be simply bound with the following code using the module_::def()
function:
void bindfunctions(py::module &m) {
...
m.def("nvds_add_user_meta_to_frame", // Name of function in PyDS module
&nvds_add_user_meta_to_frame, // Function in C API to be bound
"frame_meta"_a, // Expose "frame_meta" as keyword argument
"user_meta"_a, // Expose "user_meta" as keyword argument
pydsdoc::methodsDoc::nvds_add_user_meta_to_frame) // Docstring
...
}
Note that since nvds_add_user_meta_to_obj
is of return type void
, no return value policy needs to be set, as nothing
is returned from the function. Keyword argument names are exposed to the module using the _a
operator, which is shorthand for the py::arg
special tag. See the keyword arguments pybind11 documentation for more details.
To add a new function to the module, we also call module_::def()
, but instead of referencing an existing function in the C API, we may define a lambda function in the call. The arguments are exposed in the same manner. For example, the get_segmentation_masks
function:
void bindfunctions(py::module &m) {
...
m.def("get_segmentation_masks",
[](void *data) { // Start of lambda function definition
auto *META = (NvDsInferSegmentationMeta *) data; // Cast void* to NvDsInferSegmentationMeta*
int width = META->width; // Get width of mask array
int height = META->height; // Get height of mask array
auto dtype = py::dtype(py::format_descriptor<int>::format()); // int datatype
return py::array(dtype, {height, width}, // datatype, shape of array
{sizeof(int) * width, sizeof(int)}, // strides (in bytes) in each dimension
META->class_map); // pointer to buffer
},
"data"_a, // Expose "data" as keyword argument
pydsdoc::methodsDoc::get_segmentation_masks); // Docstring
...
}
This function also serves as a demonstration for exposing a C buffer to the Python API as a NumPy array. This is accomplished be writing a function which
returns a py::array
type constructed from the datatype
of the buffer, the shape of the buffer, the strides in bytes in each index, and the pointer to the buffer. Please see the deepstream-segmentation app for example usage of the function and the returned array:
# Retrieve mask data in the numpy format from segmeta
# Note that pyds.get_segmentation_masks() expects object of
# type NvDsInferSegmentationMeta
masks = pyds.get_segmentation_masks(segmeta)
masks = np.array(masks, copy=True, order='C') # Copy mask to another np.array
# map the obtained masks to colors of 2 classes.
frame_image = map_mask_as_display_bgr(masks)
cv2.imwrite(folder_name + "/" + str(frame_number) + ".jpg", frame_image) # Write array to image
There are some cases for which we may want to access the string in Python as the C address of the character array, from which we may perform memory operations. For example, in deepstream-test4, we define a function for deep-copying an NvDsEventMsgMeta
struct. In
such a case, to deep copy a string field such as the sensorStr
data member, we must allocate new memory for a character array and copy in the string contents. The following macro for getter and setter functions is defined in include/bind/bind_string_property_definitions.h
:
#define STRING_PROPERTY(TYPE, FIELD) \
[](const TYPE &self)->size_t { \
return (size_t)self.FIELD; \ // Return C address of string field
}, \
[](TYPE &self, std::string str) { \
int strSize = str.size(); \
self.FIELD = (char*)calloc(strSize + 1, sizeof(char)); \ // Alloc memory for C string
str.copy(self.FIELD, strSize); \ // Copy contents into array
}, \
py::return_value_policy::reference //
We define also the get_string
method in bindings/src/bindfunctions.cpp
:
m.def("get_string",
[](size_t ptr) {
return (char *) ptr; // Return reference to string from address
},
"ptr"_a,
py::return_value_policy::reference, // Owned by C side
pydsdoc::methodsDoc::get_string);
So, we bind the sensorStr
data member as follows:
py::class_<NvDsEventMsgMeta>(m, "NvDsEventMsgMeta",
pydsdoc::metaschema::EventmsgDoc::descr)
...
.def_property("sensorStr",
STRING_PROPERTY(NvDsEventMsgMeta, sensorStr))
...
Then, in the streammux src pad probe function
where data
is the newly allocated CustomDataStruct
object, and test_string
is the python string object to be copied:
test_string = 'test message ' + str(frame_number)
data = pyds.alloc_custom_struct(user_meta)
data.message = test_string # python string object at first
data.message = pyds.get_string(data.message)
data.message
calls the getter function defined in the string property, which returns the C address of the string, which is then passed into the get_string
method. The assignment operator passes the resulting string reference into the setter function for data.message
, which allocates memory for the C string and copies in the content of the string.
Docstrings should be declared and defined as a constexpr const char*
in a header file under docstrings/
corresponding to the header to which the binding belongs. All docstrings belong under the pydsdoc::{header_name}doc
namespace. The final documentation is generated with Sphinx, so docstrings must follow .rst format and use Sphinx directives.
Using NvDsObjectMeta
as an example again, we would create the file docstrings/nvdsmetadoc.h
. Under the namespace pydsdoc
, we create the namespace nvdsmetadoc
following the convention {header name}doc
. Under the nvdsmetadoc
namespace, we then create a namespace for each struct following the {struct name}Doc
convention: NvDsObjectMetaDoc
. Note: the current docstrings do not all follow this convention, but will be fixed for consistency in the future. For structs, we define one string descr
to describe the struct and all of its datamembers, along with any example usage. For each data member, follow the :ivar {data member name}: *data type*, [description]
format. Put example usage in a code block using the ::
directive:
#pragma once // Ensure header file is included only once
namespace pydsdoc
{
namespace nvdsmetadoc
{
namespace NvDsObjectMetaDoc
{
constexpr const char* descr = R"pyds(
Holds information of object metadata in the frame.
:ivar base_meta: :class:`NvDsBaseMeta`, base_meta
:ivar parent: the parent :class:`NvDsObjectMeta` object. Set to None if parent is not present
:ivar unique_component_id: *int*, unique component id that attaches NvDsObjectMeta metadata
:ivar class_id: *int*, Index of the object class infered by the primary detector/classifier
:ivar object_id: *int*, Unique ID for tracking the object. @ref UNTRACKED_OBJECT_ID indicates the object has not been tracked
:ivar confidence: *float*, Holds a confidence value for the object, set by the inference component.
Confidence will be set to -0.1, if "Group Rectangles" mode of clustering is chosen since the algorithm does not preserve confidence values.
Also, for objects found by tracker and not inference component, confidence will be set to -0.1
:ivar detector_bbox_info: :class:`NvDsComp_BboxInfo`, Holds a structure containing bounding box parameters of the object when detected by detector
:ivar tracker_bbox_info: :class:`NvDsComp_BboxInfo`, Holds a structure containing bounding box coordinates of the object when processed by tracker
:ivar tracker_confidence: *float*, Holds a confidence value for the object set by nvdcf_tracker. tracker_confidence will be set to -0.1 for KLT and IOU tracker
:ivar rect_params: :class:`NvOSD_RectParams`, Structure containing the positional parameters of the object in the frame.
e.g. If the tracker component is after the detector component in the pipeline, then positional parameters are from tracker component.
Can also be used to overlay borders / semi-transparent boxes on top of objects. See :class:`NvOSD_RectParams`
:ivar mask_params: :class:`NvOSD_MaskParams`, Holds mask parameters for the object. This mask is overlaid on object See :class:`NvOSD_MaskParams`
:ivar text_params: :class:`NvOSD_TextParams`, Text describing the object can be overlayed using this structure. See :class:`NvOSD_TextParams`
:ivar obj_label: An array to store the string describing the class of the detected object
:ivar classifier_meta_list: list of objects of type :class:`NvDsClassifierMeta`
:ivar obj_user_meta_list: list of objects of type :class:`NvDsUserMeta`
:ivar misc_obj_info: *list of int*, For additional user specific batch info
:ivar reserved: *int*, Reserved for internal use.
Example usage:
::
#Initialize dict to keep count of objects of each type
obj_counter = {
PGIE_CLASS_ID_VEHICLE:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
l_obj=frame_meta.obj_meta_list #Retrieve list of NvDsObjectMeta objects in frame from an NvDsFrameMeta object. See NvDsFrameMeta documentation for more details.
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1 #Retrieve class_id from NvDsObjectMeta (i.e. PGIE_CLASS_ID_VEHICLE, PGIE_CLASS_ID_PERSON, etc.) to update count
obj_meta.rect_params.border_color.set(0.0, 0.0, 1.0, 0.0) #Set border color of NvDsObjectMeta object's rect_params
try:
l_obj=l_obj.next
except StopIteration:
break)pyds";
}
}
}
Note that the tag :class:`{class name}`
will generate a link in the documentation to that class. See the Python API documentation for NvDsObjectMeta
to see the resulting doc.
We also declare a docstring {function name}
for every member function, under the same namespace:
#pragma once // Ensure header file is included only once
namespace pydsdoc
{
namespace nvdsmetadoc
{
namespace NvDsObjectMetaDoc
{
...
constexpr const char* cast=R"pyds(cast given object/data to :class:`NvDsObjectMeta`, call pyds.NvDsObjectMeta.cast(data))pyds";
}
}
}
Any new bindings source file created must be added to ../docs/bindings_file_list.txt
. After running ../docs/parse_bindings.py
on the updated list, check ../docs/PYTHON_API
to find the new toctree rst file. Add the file name to ../docs/index.rst
. In our case, we added bindnvdsmeta.cpp
to the file list, which generated the file ../docs/PYTHON_API/NvDsMeta/NvDsMeta_toc.rst
. So, in index.rst
:
...
.. toctree::
:maxdepth: 7
:caption: DeepStream Python API Reference
:name: DeepStream Python API Reference
PYTHON_API/NvDsMeta/NvDsMeta_toc
...
Consider the NvDsInferDataType
enumerator, declared under <DeepStream Root>/include/nvdsinfer.h
. Similarly to the last example, we create the file docstrings/nvdsinferdoc.h
. Under the namespace pydsdoc::nvdsinferdoc::NvDsInferDataTypeDoc
, we write a docstring descr
for the description of the enumerator, and a string {value name}
for the description for each value of the enum:
#pragma once
namespace pydsdoc
{
namespace nvdsinferdoc
{
namespace NvDsInferDataTypeDoc
{
constexpr const char* descr = R"pyds(*Enumerator*, Specifies the data type of a layer.)pyds";
constexpr const char* FLOAT =R"pyds(FP32 format.)pyds";
constexpr const char* HALF=R"pyds(FP16 format.)pyds";
constexpr const char* INT8 =R"pyds(INT8 format.)pyds";
constexpr const char* INT32 =R"pyds(INT32 format.)pyds";
}
}
}
Docstrings for functions should be written in the docstrings/functionsdoc.h
header file, under the pydsdoc::functionsdoc
namespace (again, note that the current status of the docstrings does not reflect the desired convention). A separate docstring for each function should be written in the following format:
constexpr const char* {function name}=R"pyds(
{function description}
:arg {argument 1 name}: {argument 1 description}
...
:arg {argument n name}: {argument n description}
:returns: {return value description})pyds";
For example, for the get_segmentation_masks
function discussed earlier:
#pragma once
namespace pydsdoc
{
namespace functionsDoc
{
constexpr const char* get_segmentation_masks=R"pyds(
This function returns the inferred masks in Numpy format in the height X width shape, these height and width are obtained from the :class:`NvDsInferSegmentationMeta`.
:arg data: An object of type :class:`NvDsInferSegmentationMeta`
:returns: A NumPy array of shape (height, width) containing the inferred masks)pyds";
}
}
Additionally, the function must be added to ../docs/PYTHON_API/Methods/methodsdoc.rst
:
...
======================
get_segmentation_masks
======================
.. autofunction:: pyds.get_segmentation_masks
...
It can be tricky to type cast some Gst-Python data types in Python.
This was recently discovered during an implementation of a binding that needed to send a custom event from Python.
We will use gst_nvevent_new_stream_reset(source_id)
event as an example of this. This api creates a custom reset event for the specified source.
We can find it defined in <DS_ROOT>/sources/includes/gst-nvevent.h
.
The issue at hand is that this api returns a GstEvent *
pointer, which cannot be type cast to any existing data type in GstPython.
To circumvent this limitation, we alternatively implement a binding in PyDS which takes a GstElement, for which the custom reset event needs to be generated, and call the api above directly from the bindings as follows:
m.def("gst_element_send_nvevent_new_stream_reset",
[](size_t gst_element, int source_id) {
auto *element = reinterpret_cast<GstElement *>(gst_element);
return gst_element_send_event(element, gst_nvevent_new_stream_reset(source_id));
},
pydsdoc::methodsDoc::gst_element_send_nvevent_new_stream_reset);
So now, we can return the status of whether the event was handled properly, which is provided by gst_element_send_event()
back to Python app as a boolean.