-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathbert_example.py
100 lines (88 loc) · 3.69 KB
/
bert_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (C) 2020 THL A29 Limited, a Tencent company.
# All rights reserved.
# Licensed under the BSD 3-Clause License (the "License"); you may
# not use this file except in compliance with the License. You may
# obtain a copy of the License at
# https://opensource.org/licenses/BSD-3-Clause
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" basis,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# See the AUTHORS file for names of contributors.
import torch
import transformers
import turbo_transformers
import enum
import time
import sys
class LoadType(enum.Enum):
PYTORCH = "PYTORCH"
PRETRAINED = "PRETRAINED"
NPZ = "NPZ"
def test(loadtype: LoadType, use_cuda: bool):
test_device = torch.device('cuda:0') if use_cuda else \
torch.device('cpu:0')
model_id = "bert-base-uncased"
model = transformers.BertModel.from_pretrained(model_id)
model.eval()
model.to(test_device)
torch.set_grad_enabled(False)
cfg = model.config
# use 4 threads for computing
turbo_transformers.set_num_threads(4)
input_ids = torch.tensor(
([12166, 10699, 16752, 4454], [5342, 16471, 817, 16022]),
dtype=torch.long,
device=test_device)
# position_ids = torch.tensor(([1, 0, 0, 0], [1, 1, 1, 0]), dtype=torch.long, device = test_device)
segment_ids = torch.tensor(([1, 1, 1, 0], [1, 0, 0, 0]),
dtype=torch.long,
device=test_device)
start_time = time.time()
for _ in range(10):
torch_res = model(
input_ids, token_type_ids=segment_ids
) # sequence_output, pooled_output, (hidden_states), (attentions)
end_time = time.time()
print("\ntorch time consum: {}".format(end_time - start_time))
print("torch bert sequence output: ",
torch_res[0][:, 0, :]) #get the first sequence
print("torch bert pooler output: ", torch_res[1]) # pooled_output
# there are three ways to load pretrained model.
if loadtype is LoadType.PYTORCH:
# 1, from a PyTorch model, which has loaded a pretrained model
# note that you can choose "turbo" or "onnxrt" as backend
# "turbo" is a hand-crafted implementation and optimized with OMP.
tt_model = turbo_transformers.BertModel.from_torch(
model, test_device, "turbo")
elif loadtype is LoadType.PRETRAINED:
# 2. directly load from checkpoint (torch saved model)
tt_model = turbo_transformers.BertModel.from_pretrained(
model_id, test_device)
elif loadtype is LoadType.NPZ:
# 3. load model from npz
if len(sys.argv) == 2:
try:
print(sys.argv[1])
in_file = sys.argv[1]
except:
sys.exit("ERROR. can not open ", sys.argv[1])
else:
in_file = "/workspace/bert_torch.npz"
tt_model = turbo_transformers.BertModel.from_npz(in_file, cfg)
else:
raise ("LoadType is not supported")
start_time = time.time()
for _ in range(10):
res = tt_model(
input_ids,
token_type_ids=segment_ids) # sequence_output, pooled_output
end_time = time.time()
print("turbo bert sequence output:", res[0][:, 0, :])
print("turbo bert pooler output: ", res[1]) # pooled_output
print("\nturbo time consum: {}".format(end_time - start_time))
assert (torch.max(torch.abs(res[0] - torch_res[0])) < 0.2)
if __name__ == "__main__":
test(LoadType.NPZ, False)
# test(LoadType.PRETRAINED, False)