-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathtrans_web_demo.py
143 lines (117 loc) · 5.17 KB
/
trans_web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
This script creates an interactive web demo for the GLM-4-9B model using Gradio,
a Python library for building quick and easy UI components for machine learning models.
It's designed to showcase the capabilities of the GLM-4-9B model in a user-friendly interface,
allowing users to interact with the model through a chat-like interface.
"""
import os
from pathlib import Path
from threading import Thread
from typing import Union
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer
)
ModelType = Union[PreTrainedModel]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/LongWriter-glm4-9b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
def _resolve_path(path: Union[str, Path]) -> Path:
return Path(path).expanduser().resolve()
def load_model_and_tokenizer(
model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
model_dir = _resolve_path(model_dir)
model = AutoModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, use_fast=False
)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# stop_ids = model.config.eos_token_id
stop_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def predict(history, prompt, max_length, top_p, temperature):
stop = StopOnTokens()
messages = []
if prompt:
messages.append({"role": "system", "content": prompt})
for idx, (user_msg, model_msg) in enumerate(history):
if prompt and idx == 0:
continue
if idx == len(history) - 1 and not model_msg:
# messages.append({"role": "user", "content": user_msg})
query = user_msg
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.build_chat_input(query, history=messages, role='user').input_ids.to(
next(model.parameters()).device)
streamer = TextIteratorStreamer(tokenizer, timeout=600, skip_prompt=True, skip_special_tokens=True)
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1,
"eos_token_id": eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token and '<|user|>' in new_token:
new_token = new_token.split('<|user|>')[0]
if new_token:
history[-1][1] += new_token
yield history
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">LongWriter Chat Demo</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=5, container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit")
with gr.Column(scale=1):
prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
pBtn = gr.Button("Set Prompt")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=32768, step=1.0, label="Maximum length(Input + Output)", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
def user(query, history):
return "", history + [[query, ""]]
def set_prompt(prompt_text):
return [[prompt_text, "成功设置prompt"]]
pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
)
emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)
demo.queue()
demo.launch(server_name="127.0.0.1", server_port=8008, inbrowser=True, share=True)