-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdemo.py
171 lines (156 loc) · 6.12 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os, json, re
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import docx
import PyPDF2
from st_click_detector import click_detector
st.set_page_config(layout="wide")
st.title("LongCite Demo")
use_vllm = False # set True to use vllm for inference
@st.cache_resource
def load_model():
model_path = "THUDM/LongCite-glm4-9b"
if use_vllm:
from vllm_inference import LongCiteModel
model = LongCiteModel(
model= model_path,
dtype=torch.bfloat16,
trust_remote_code=True,
tensor_parallel_size=1,
max_model_len=131072,
gpu_memory_utilization=1,
)
tokenizer = model.get_tokenizer()
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map='auto')
return tokenizer, model
tokenizer, model = load_model()
def convert_to_txt(file):
doc_type = file.name.split(".")[-1].strip()
if doc_type in ["txt", "md", "py"]:
data = [file.read().decode('utf-8')]
elif doc_type in ["pdf"]:
pdf_reader = PyPDF2.PdfReader(file)
data = [pdf_reader.pages[i].extract_text() for i in range(len(pdf_reader.pages))]
elif doc_type in ["docx"]:
doc = docx.Document(file)
data = [p.text for p in doc.paragraphs]
else:
st.error(f"ERROR: unsupported document type: {doc_type}")
text = "\n\n".join(data)
return text
def process_text(text):
special_char={
'&': '&',
'\'': ''',
'"': '"',
'<': '<',
'>': '>',
'\n': '<br>',
}
for x, y in special_char.items():
text = text.replace(x, y)
return text
html_styles = """<style>
.reference {
color: blue;
text-decoration: underline;
}
.highlight {
background-color: yellow;
}
.label {
font-family: sans-serif;
font-size: 16px;
font-weight: bold;
}
.Bold {
font-weight: bold;
}
.statement {
background-color: lightgrey;
}
</style>\n"""
def convert_to_html(statements, clicked=-1):
html = html_styles + '<br><span class="label">Answer:</span><br>\n'
all_cite_html = []
clicked_cite_html = None
idx = 0
for i, js in enumerate(statements):
statement, citations = process_text(js['statement']), js['citation']
if clicked == i:
html += f"""<span class="statement">{statement}</span>"""
else:
html += f"<span>{statement}</span>"
if citations:
cite_html = []
idxs = []
for c in citations:
idx += 1
idxs.append(str(idx))
cite = '[Sentence: {}-{}\t|\tChar: {}-{}]<br>\n<span {}>{}</span>'.format(c['start_sentence_idx'], c['end_sentence_idx'], c['start_char_idx'], c['end_char_idx'], 'class="highlight"' if clicked==i else "", process_text(c['cite'].strip()))
cite_html.append(f"""<span><span class="Bold">Snippet [{idx}]:</span><br>{cite}</span>""")
all_cite_html.extend(cite_html)
cite_num_html = """ <a href='#' class="reference" id={}>[{}]</a>""".format(i, ','.join(idxs))
html += cite_num_html
html += '\n'
if clicked == i:
clicked_cite_html = html_styles + """<br><span class="label">Citations of current statement:</span><br><div style="overflow-y: auto; padding: 20px; border: 0px dashed black; border-radius: 6px; background-color: #EFF2F6;">{}</div>""".format("<br><br>\n".join(cite_html))
all_cite_html = html_styles + """<br><span class="label">All citations:</span><br>\n<div style="overflow-y: auto; padding: 20px; border: 0px dashed black; border-radius: 6px; background-color: #EFF2F6;">{}</div>""".format("<br><br>\n".join(all_cite_html).replace('<span class="highlight">', '<span>'))
return html, all_cite_html, clicked_cite_html
@st.fragment
def render_answer(statements):
answer_html, all_cite_html, clicked_cite_html = convert_to_html(statements, clicked=st.session_state.get("last_clicked", -1))
col1, col2 = st.columns([4, 4])
with col1:
clicked = click_detector(answer_html)
with col2:
if clicked_cite_html:
st.html(clicked_cite_html)
st.html(all_cite_html)
change = False
if clicked != "":
clicked = int(clicked)
if "last_clicked" not in st.session_state:
st.session_state["last_clicked"] = clicked
change = True
else:
if clicked != st.session_state["last_clicked"]:
st.session_state["last_clicked"] = clicked
change = True
if change:
st.rerun(scope='fragment')
def change_label_style(label, font_size='12px', font_color='black', font_family='sans-serif', font_weight='normal'):
html = f"""
<script>
var elems = window.parent.document.querySelectorAll('p');
var elem = Array.from(elems).find(x => x.innerText == '{label}');
elem.style.fontSize = '{font_size}';
elem.style.color = '{font_color}';
elem.style.fontFamily = '{font_family}';
elem.style.fontWeight = '{font_weight}';
</script>
"""
st.components.v1.html(html)
col1, col2 = st.columns([4, 4])
context = None
with col1:
uploaded_file = st.file_uploader("Upload a document (supported type: pdf, docx, txt, md, py)")
with col2:
if uploaded_file is not None:
context = convert_to_txt(uploaded_file)
st.text_area("Document Content", context, height=270)
result = None
with col1:
query = st.text_input("Question:")
# change_label_style("Question:", font_size='16px', font_weight="bold")
if st.button("Submit") and query:
if context is None:
st.error("Error: no uploaded document.")
with st.spinner('running...'):
result = model.query_longcite(context, query, tokenizer=tokenizer, max_input_length=128000, max_new_tokens=1024)
if result:
statements = result['all_statements']
render_answer(statements)