forked from chatchat-space/Langchain-Chatchat
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllm_api_stale.py
258 lines (235 loc) · 9.31 KB
/
llm_api_stale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
调用示例: python llm_api_stale.py --model-path-address THUDM/chatglm2-6b@localhost@7650 THUDM/chatglm2-6b-32k@localhost@7651
其他fastchat.server.controller/worker/openai_api_server参数可按照fastchat文档调用
但少数非关键参数如--worker-address,--allowed-origins,--allowed-methods,--allowed-headers不支持
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
import subprocess
import re
import logging
import argparse
LOG_PATH = "./logs/"
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
parser = argparse.ArgumentParser()
# ------multi worker-----------------
parser.add_argument('--model-path-address',
default="THUDM/chatglm2-6b@localhost@20002",
nargs="+",
type=str,
help="model path, host, and port, formatted as model-path@host@path")
# ---------------controller-------------------------
parser.add_argument("--controller-host", type=str, default="localhost")
parser.add_argument("--controller-port", type=int, default=21001)
parser.add_argument(
"--dispatch-method",
type=str,
choices=["lottery", "shortest_queue"],
default="shortest_queue",
)
controller_args = ["controller-host", "controller-port", "dispatch-method"]
# ----------------------worker------------------------------------------
parser.add_argument("--worker-host", type=str, default="localhost")
parser.add_argument("--worker-port", type=int, default=21002)
# parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
# parser.add_argument(
# "--controller-address", type=str, default="http://localhost:21001"
# )
parser.add_argument(
"--model-path",
type=str,
default="lmsys/vicuna-7b-v1.3",
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument(
"--revision",
type=str,
default="main",
help="Hugging Face Hub model revision identifier",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda", "mps", "xpu"],
default="cuda",
help="The device type",
)
parser.add_argument(
"--gpus",
type=str,
default="0",
help="A single GPU like 1 or multiple GPUs like 0,2",
)
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument(
"--max-gpu-memory",
type=str,
default="20GiB",
help="The maximum memory per gpu. Use a string like '13Gib'",
)
parser.add_argument(
"--load-8bit", action="store_true", help="Use 8-bit quantization"
)
parser.add_argument(
"--cpu-offloading",
action="store_true",
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU",
)
parser.add_argument(
"--gptq-ckpt",
type=str,
default=None,
help="Load quantized model. The path to the local GPTQ checkpoint.",
)
parser.add_argument(
"--gptq-wbits",
type=int,
default=16,
choices=[2, 3, 4, 8, 16],
help="#bits to use for quantization",
)
parser.add_argument(
"--gptq-groupsize",
type=int,
default=-1,
help="Groupsize to use for quantization; default uses full row.",
)
parser.add_argument(
"--gptq-act-order",
action="store_true",
help="Whether to apply the activation order GPTQ heuristic",
)
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument(
"--limit-worker-concurrency",
type=int,
default=5,
help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
worker_args = [
"worker-host", "worker-port",
"model-path", "revision", "device", "gpus", "num-gpus",
"max-gpu-memory", "load-8bit", "cpu-offloading",
"gptq-ckpt", "gptq-wbits", "gptq-groupsize",
"gptq-act-order", "model-names", "limit-worker-concurrency",
"stream-interval", "no-register",
"controller-address", "worker-address"
]
# -----------------openai server---------------------------
parser.add_argument("--server-host", type=str, default="localhost", help="host name")
parser.add_argument("--server-port", type=int, default=8888, help="port number")
parser.add_argument(
"--allow-credentials", action="store_true", help="allow credentials"
)
# parser.add_argument(
# "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
# )
# parser.add_argument(
# "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
# )
# parser.add_argument(
# "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
# )
parser.add_argument(
"--api-keys",
type=lambda s: s.split(","),
help="Optional list of comma separated API keys",
)
server_args = ["server-host", "server-port", "allow-credentials", "api-keys",
"controller-address"
]
# 0,controller, model_worker, openai_api_server
# 1, 命令行选项
# 2,LOG_PATH
# 3, log的文件名
base_launch_sh = "nohup python3 -m fastchat.serve.{0} {1} >{2}/{3}.log 2>&1 &"
# 0 log_path
# ! 1 log的文件名,必须与bash_launch_sh一致
# 2 controller, worker, openai_api_server
base_check_sh = """while [ `grep -c "Uvicorn running on" {0}/{1}.log` -eq '0' ];do
sleep 5s;
echo "wait {2} running"
done
echo '{2} running' """
def string_args(args, args_list):
"""将args中的key转化为字符串"""
args_str = ""
for key, value in args._get_kwargs():
# args._get_kwargs中的key以_为分隔符,先转换,再判断是否在指定的args列表中
key = key.replace("_", "-")
if key not in args_list:
continue
# fastchat中port,host没有前缀,去除前缀
key = key.split("-")[-1] if re.search("port|host", key) else key
if not value:
pass
# 1==True -> True
elif isinstance(value, bool) and value == True:
args_str += f" --{key} "
elif isinstance(value, list) or isinstance(value, tuple) or isinstance(value, set):
value = " ".join(value)
args_str += f" --{key} {value} "
else:
args_str += f" --{key} {value} "
return args_str
def launch_worker(item, args, worker_args=worker_args):
log_name = item.split("/")[-1].split("\\")[-1].replace("-", "_").replace("@", "_").replace(".", "_")
# 先分割model-path-address,在传到string_args中分析参数
args.model_path, args.worker_host, args.worker_port = item.split("@")
args.worker_address = f"http://{args.worker_host}:{args.worker_port}"
print("*" * 80)
print(f"如长时间未启动,请到{LOG_PATH}{log_name}.log下查看日志")
worker_str_args = string_args(args, worker_args)
print(worker_str_args)
worker_sh = base_launch_sh.format("model_worker", worker_str_args, LOG_PATH, f"worker_{log_name}")
worker_check_sh = base_check_sh.format(LOG_PATH, f"worker_{log_name}", "model_worker")
subprocess.run(worker_sh, shell=True, check=True)
subprocess.run(worker_check_sh, shell=True, check=True)
def launch_all(args,
controller_args=controller_args,
worker_args=worker_args,
server_args=server_args
):
print(f"Launching llm service,logs are located in {LOG_PATH}...")
print(f"开始启动LLM服务,请到{LOG_PATH}下监控各模块日志...")
controller_str_args = string_args(args, controller_args)
controller_sh = base_launch_sh.format("controller", controller_str_args, LOG_PATH, "controller")
controller_check_sh = base_check_sh.format(LOG_PATH, "controller", "controller")
subprocess.run(controller_sh, shell=True, check=True)
subprocess.run(controller_check_sh, shell=True, check=True)
print(f"worker启动时间视设备不同而不同,约需3-10分钟,请耐心等待...")
if isinstance(args.model_path_address, str):
launch_worker(args.model_path_address, args=args, worker_args=worker_args)
else:
for idx, item in enumerate(args.model_path_address):
print(f"开始加载第{idx}个模型:{item}")
launch_worker(item, args=args, worker_args=worker_args)
server_str_args = string_args(args, server_args)
server_sh = base_launch_sh.format("openai_api_server", server_str_args, LOG_PATH, "openai_api_server")
server_check_sh = base_check_sh.format(LOG_PATH, "openai_api_server", "openai_api_server")
subprocess.run(server_sh, shell=True, check=True)
subprocess.run(server_check_sh, shell=True, check=True)
print("Launching LLM service done!")
print("LLM服务启动完毕。")
if __name__ == "__main__":
args = parser.parse_args()
# 必须要加http//:,否则InvalidSchema: No connection adapters were found
args = argparse.Namespace(**vars(args),
**{"controller-address": f"http://{args.controller_host}:{str(args.controller_port)}"})
if args.gpus:
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
launch_all(args=args)