-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathauto_client.py
122 lines (106 loc) · 4.93 KB
/
auto_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# this is a script to use built-in autopilot agent for data collection
# nothing to do with what we proposed in the project
import argparse
from args import init_parser, post_processing
import numpy as np
from envs import make_env
# find the carla module
import glob
import os
import sys
import cv2
import math
import random
import time
import torch
from envs.CARLA.carla_lib.carla.client import make_carla_client
from envs.CARLA.carla_env import CarlaEnv
parser = argparse.ArgumentParser(description='SPC')
init_parser(parser) # See `args.py` for default arguments
args = parser.parse_args()
args = post_processing(args)
args.recording_frame = True
args.monitor = True
args.use_depth = True
args.port = 2666
args.vehicle_num = 128
args.use_detection = True
args.frame_width = 512
args.frame_height = 256
args.use_3d_detection = True
save_path = 'carla_datasetv4'
if not os.path.isdir(save_path):
os.makedirs(save_path)
if not os.path.isdir(args.save_path):
os.makedirs(os.path.join(args.save_path, "monitor_record", "obs"))
os.makedirs(os.path.join(args.save_path, "monitor_record", "mon"))
os.makedirs(os.path.join(args.save_path, "monitor_record", "seg"))
else:
if args.debug:
import shutil
shutil.rmtree(args.save_path)
def save(obs, info, control, episode, step):
episode_path = os.path.join(save_path, str(episode))
f_action = open(os.path.join(episode_path, 'action.txt'), 'a')
f_states = open(os.path.join(episode_path, 'state.txt'), 'a')
f_collwiths = open(os.path.join(episode_path, 'coll_withs.txt'), 'a')
img_path = os.path.join(episode_path, "obs", '{}.jpg'.format(step))
cv2.imwrite(img_path, obs)
np.save(os.path.join(episode_path, "seg", '{}.npy'.format(step)), info['seg'])
# save visible 3d bounding boxes
if args.use_3d_detection:
bbox_3d = info["3d_bboxes"]
bbox_3d = np.array(bbox_3d).reshape(-1,8,3) if len(bbox_3d) > 0 else np.zeros(1)
np.save(os.path.join(episode_path, "3d_bbox", "{}.npy".format(step)), bbox_3d)
if args.use_detection:
bboxes = info["bboxes"]
bboxes = np.array(bboxes) if len(bboxes) > 0 else np.zeros(1)
np.save(os.path.join(episode_path, "2d_bbox", "{}.npy".format(step)), bboxes)
if args.use_depth:
depth = info["depth"]
np.save(os.path.join(episode_path, "depth", "{}.npy".format(step)), depth)
orientations = info['orientations']
dimensionses = info['dimensionses']
calib = info["calib"]
np.save(os.path.join(episode_path, "calib", "intrinsic_{}.npy".format(step)), calib["intrinsic"])
np.save(os.path.join(episode_path, "calib", "extrinsic_{}.npy".format(step)), calib["extrinsic"])
np.save(os.path.join(episode_path, "calib", "player_transform_{}.npy".format(step)), calib["player_transform"])
np.save(os.path.join(episode_path, "calib", "camera_transform_{}.npy".format(step)), calib["camera_transform"])
# player_x, player_y, player_z = extrinsic.location.x, extrinsic.location.y, extrinsic.location.z
# player_orix, player_oriy = extrinsic.orientation.x, extrinsic.orientation.y
# player_yaw = extrinsic.rotation.yaw
# extrinsic = np.array([player_x, player_y, player_z, player_orix, player_oriy, player_yaw])
colls_with = info['coll_with']
np.save(os.path.join(episode_path, "orientations", "{}.npy".format(step)), orientations)
np.save(os.path.join(episode_path, "dimensions", "{}.npy".format(step)), dimensionses)
# np.save(os.path.join(episode_path, "extrinsics", "{}.npy".format(step)), extrinsic)
f_collwiths.write("{}: {}\n".format(step, colls_with))
f_action.write('{}: {} {}\n'.format(step, control.steer, control.throttle))
f_states.write('{}: {} {} {} {}\n'.format(step, info['collision'], info['collision_other'], info['offroad'], info['offlane']))
def loop(client, step, episode):
obs, info, control = client.reset(autopilot=True)
# save(obs, info, control, episode, 0)
for i in range(step):
obs, info, done, control, _ = client.step(autopilot=True, rnd=0.07)
episode_path = os.path.join(save_path, str(episode))
if i == 0:
os.makedirs(os.path.join(episode_path, "obs"))
os.makedirs(os.path.join(episode_path, "seg"))
os.makedirs(os.path.join(episode_path, "2d_bbox"))
os.makedirs(os.path.join(episode_path, "3d_bbox"))
os.makedirs(os.path.join(episode_path, "depth"))
os.makedirs(os.path.join(episode_path, "orientations"))
os.makedirs(os.path.join(episode_path, "dimensions"))
os.makedirs(os.path.join(episode_path, "calib"))
save(obs, info, control, episode, i + 1)
if done:
print("finished at step {}".format(i))
return
def main():
client = make_carla_client('localhost', args.port, 100000)
env = CarlaEnv(client, args)
for i in range(200):
print("===== begin episode {} =====".format(i))
loop(env, 2000, i)
if __name__ == '__main__':
main()