-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPUMA 260 Simulation.m
214 lines (174 loc) · 5.55 KB
/
PUMA 260 Simulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
Simulation of PUMA 260
%Name: C. Michael Collins
%Date Constructed: July 4th, 2020 [INDEPENDENCE DAY!]
%L = Link(theta(rad), d (cm), a (cm), alpha (rad))
%PUMA has 6DOF, so 6 links
L(1) = Link([0 35 0 -pi/2]);
L(2) = Link([0 -5 20 0]);
L(3) = Link([0 0 0 -pi/2]);
L(4) = Link([0 20 0 pi/2]);
L(5) = Link([0 0 0 -pi/2]);
L(6) = Link([0 5 0 0]);
%No offset required for home position
%Safe Planar3d in simulation and assign
planar3d = SerialLink(L);
planar3d.name = 'PUMA PRIDE!';
qz = [0 0 0 0 0 0]; %angles of theta for each link in home position
%Generated plot for home position
%Note that the simulation plots do not save for individual figures, so whichever simulation you want to view, comment out the other two.
figure (1)
planar3d.plot(qz);
%Forward Kinematics
q2 = [pi/3 pi/24 -pi/4 pi/4 pi/4 pi/4]; %Case 2 in Rads
q3 = [pi/24 0 pi/3 pi/4 pi -pi/2]; %Case 3 in Rads
T_home = planar3d.fkine(qz); %Matrix for Home position
T_2 = planar3d.fkine(q2); %Matrix for Case 2
T_3 = planar3d.fkine(q3); %Matrix for Case 3
%Generated plots for Cases 2 & 3
%planar3d.plot(q2); %Uncomment then comment other plots
%planar3d.plot(q3); %Uncomment then comment other plots
%X-Position versus Time plot generated from Simulink values
%NEXT FIGURE COMING
%figure (2)
%plot(X.time, X.signals.values)
%xlabel('time (s)')
%ylabel('X-axis (cm)')
%title("X-axis Coordinate Motion Over Time")
%Y-Position versus Time Plot generated from Simulink values
%figure (3)
%plot(Y.time, Y.signals.values)
%xlabel('time(s)')
%ylabel('Y-axis (cm)')
%title("Y-axis Coordinate Motion Over Time")
%Inverse Kinematics
%Using code provided for calculating Inverse Kinematics
q2_i = planar3d.ikine(T_2); %to get one of the 32 solutions
T_i = planar3d.fkine(q2_i); %should get back T_2
%Parameter of links
d1=35; %a
d2=-5; %b
d4=20; %d
d6=5; %e
a2=20; % c
a3=0; % 0 for PUMA 260
%Define the hand coordinates with respect to base 0T6
% Using 0T6 for [60 15 -45 45 45 45]
OT6 = [ 0.8333 -0.3639 -0.4161 18.2516;
-0.2638 -0.9233 0.2793 26.6127;
-0.4858 -0.1229 -0.8654 12.1956;
0 0 0 1.0000];
%Extract unit vectors
%Position is defined by the vector q
u=OT6(1:3,1);
v=OT6(1:3,2);
w=OT6(1:3,3);
q=OT6(1:3,4);
%-------------------------------------------------
%Find the wist centre position p
p=q-d6.*w;
theta1_1=(-p(1)+sqrt(p(1)^2+p(2)^2-d2^2))/(d2+p(2));
theta1_2=(-p(1)-sqrt(p(1)^2+p(2)^2-d2^2))/(d2+p(2));
%-------------------------------------------------
%-----Theta 1 (four solutions)---------------------
t1=zeros(4,1);
t1(1)=2*atan(theta1_1);
t1(2)=t1(1)+pi;
t1(3)=2*atan(theta1_2);
t1(4)=t1(3)+pi;
%-------------------------------------------------
%-----Theta 3 (four solutions)--------------------
k1=-2*a2*d4;
k2=2*a2*a3;
k3=p(1)^2+p(2)^2+(d1-p(3))^2-(a2^2+a3^2+d2^2+d4^2);
theta3_1=(k1+sqrt(k1^2+k2^2-k3^2))/(k2+k3);
theta3_2=(k1-sqrt(k1^2+k2^2-k3^2))/(k2+k3);
t3=zeros(4,1);
t3(1)=2*atan(theta3_1);
t3(2)=t3(1)+pi;
t3(3)=2*atan(theta3_2);
t3(4)=t3(3)+pi;
%---------------------------------------------------------
%-----Theta 2 (16 solutions)
%-find theta 2 from 4 solutions theta 1 and 4 solutions theta 3
kk=1;
t2=zeros(16,1);
tt1=zeros(16,1);
tt3=zeros(16,1);
for i=1:4
for ii=1:4
al1=-d4*sin(t3(i))+a3*cos(t3(i))+a2;
al2=d4*cos(t3(i))+a3*sin(t3(i));
bet1=-d4*cos(t3(i))-a3*sin(t3(i));
bet2=-d4*sin(t3(i))+a3*cos(t3(i))+a2;
gam1=p(1)*cos(t1(ii))+p(2)*sin(t1(ii));
gam2=-p(3)+d1;
sint2=(al2*gam1-al1*gam2)/(al2*bet1-al1*bet2);
cost2=(bet2*gam1-bet1*gam2)/(bet2*al1-bet1*al2);
t2(kk)=atan2(sint2,cost2);
tt3(kk)=t3(i);
tt1(kk)=t1(ii);
kk=kk+1;
end
end
t1=tt1;
t3=tt3;
theta1=t1.*(180/pi);
theta2=t2.*(180/pi);
theta3=t3.*(180/pi);
%--------------------------------------------------
%-----Theta 5 (two solutions)
t5=zeros(32,1);
r33=-(w(1).*cos(t1).*sin(t2+t3)+w(2).*sin(t1).*sin(t2+t3)+w(3).*cos(t2+t3));
t5_1=acos(r33);
t5_2=2*pi-t5_1;
t5=[t5_1;t5_2];
theta5=t5.*(180/pi);
t1=[t1;t1];
t2=[t2;t2];
t3=[t3;t3];
%------------------------------------------
%-----Theta 4-----
r13=(w(1).*cos(t1).*cos(t2+t3)+w(2).*sin(t1).*cos(t2+t3)-w(3).*sin(t2+t3));
r23=w(1).*sin(t1)-w(2).*cos(t1);
r31=-(u(1).*cos(t1).*sin(t2+t3)+u(2).*sin(t1).*sin(t2+t3)+u(3).*cos(t2+t3));
r32=-(v(1).*cos(t1).*sin(t2+t3)+v(2).*sin(t1).*sin(t2+t3)+v(3).*cos(t2+t3));
t4=atan2(-r23./sin(t5),-r13./sin(t5));
theta4=t4.*(180/pi);
%--------------------------------------------------------------------------
%-----Theta 6-----
t6=atan2(-r32./sin(t5),r31./sin(t5));
theta6=t6.*(180/pi);
%--------------------------------------------------------------------------
%-----Results
theta1=[theta1;theta1];
theta2=[theta2;theta2];
theta3=[theta3;theta3];
theta=[round(theta1),round(theta2),round(theta3),round(theta4),round(theta5),round(theta6)];
for(j=1:32)
for(jj=1:6)
if(theta(j,jj)>180);
theta(j,jj)=theta(j,jj)-360;
end
end
end
theta
%Solution to the nearest degree
theta_r=round(theta);
%Final check for viable solutions based on forward kinematics
%Viable angles after considering safety and limitations
q1 = [-120 127 -45 -150 82 75];
q2 = [-138 127 -45 -151 80 60];
q3 = [60 53 -135 30 82 75];
q_4 = [-120 173 -135 -135 45 45];
q_5 = [-138 173 -135 -142 52 34];
q_6 = [42 53 -135 29 90 60];
q_7 = [60 -37 45 106 31 -29];
q_8 = [60 7 -45 -135 -45 -135];
q_9 = [42 7 -45 -142 -52 -146];
q_10 = [60 53 -135 -150 -82 -105];
q_11 = [42 53 -135 -151 -90 -120];
q_12 = [60 -37 45 -74 -31 151];
q_13 = [42 -37 45 -91 -29 151];
%Matrix solution should match Case 2's Matrix
%Add in whichever theta value above
T_t = planar3d.fkine(deg2rad(q_13));