-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_rl_agent.py
105 lines (86 loc) · 3.36 KB
/
train_rl_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gym
from gym_minigrid.wrappers import ImgObsWrapper
from mini_behavior.utils.wrappers import MiniBHFullyObsWrapper
from mini_behavior.register import register
import mini_behavior
from stable_baselines3 import PPO
import numpy as np
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
import torch.nn as nn
import torch
import argparse
import wandb
from wandb.integration.sb3 import WandbCallback
parser = argparse.ArgumentParser()
parser.add_argument("--task", required=True, help='name of task to train on')
parser.add_argument("--partial_obs", default=True)
parser.add_argument("--room_size", type=int, default=10)
parser.add_argument("--max_steps", type=int, default=1000)
parser.add_argument("--total_timesteps", type=int, default=5e6)
parser.add_argument("--dense_reward", action="store_true")
parser.add_argument("--policy_type", default="CnnPolicy")
args = parser.parse_args()
partial_obs = args.partial_obs
class MinigridFeaturesExtractor(BaseFeaturesExtractor):
def __init__(self, observation_space: gym.Space, features_dim: int = 512, normalized_image: bool = False) -> None:
super().__init__(observation_space, features_dim)
n_input_channels = observation_space.shape[0]
self.cnn = nn.Sequential(
nn.Conv2d(n_input_channels, 32, (2, 2)),
nn.ReLU(),
nn.Conv2d(32, 32, (2, 2)),
nn.ReLU(),
nn.Conv2d(32, 64, (2, 2)),
nn.ReLU(),
nn.Flatten(),
)
# Compute shape by doing one forward pass
with torch.no_grad():
n_flatten = self.cnn(torch.as_tensor(observation_space.sample()[None]).float()).shape[1]
self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU())
def forward(self, observations: torch.Tensor) -> torch.Tensor:
return self.linear(self.cnn(observations))
policy_kwargs = dict(
features_extractor_class=MinigridFeaturesExtractor,
features_extractor_kwargs=dict(features_dim=128),
)
# Env wrapping
env_name = f"MiniGrid-{args.task}-{args.room_size}x{args.room_size}-N2-v0"
print(f'register env {args.task}')
kwargs = {"room_size": args.room_size, "max_steps": args.max_steps}
if args.dense_reward:
assert args.task in ["PuttingAwayDishesAfterCleaning", "WashingPotsAndPans"]
kwargs["dense_reward"] = True
register(
id=env_name,
entry_point=f'mini_behavior.envs:{args.task}Env',
kwargs=kwargs
)
config = {
"policy_type": args.policy_type,
"total_timesteps": args.total_timesteps,
"env_name": env_name,
}
print('init wandb')
run = wandb.init(
project=env_name,
config=config,
sync_tensorboard=True, # auto-upload sb3's tensorboard metrics
monitor_gym=False, # auto-upload the videos of agents playing the game
save_code=True, # optional
)
print('make env')
env = gym.make(env_name)
if not args.partial_obs:
env = MiniBHFullyObsWrapper(env)
env = ImgObsWrapper(env)
print('begin training')
# Policy training
model = PPO(config["policy_type"], env, n_steps=8000, policy_kwargs=policy_kwargs, verbose=1, tensorboard_log=f"./runs/{run.id}")
model.learn(config["total_timesteps"], callback=WandbCallback(model_save_path=f"models/{run.id}"))
if not partial_obs:
model.save(f"models/ppo_cnn/{env_name}")
else:
model.save(f"models/ppo_cnn_partial/{env_name}")
run.finish()