diff --git a/README.md b/README.md index f6539ad..cd05b99 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ # Spiideo SoccerNet SynLoc ## Single Frame World Coordinate Athlete Detection and Localization with Synthetic Data -[[Paper](https://arxiv.org/)] [[Baseline](https://github.com/Spiideo/mmpose/tree/spiideo_scenes)] [[Devkit](https://github.com/Spiideo/sskit)] +[[Paper](https://arxiv.org/)] [[Baseline](https://github.com/Spiideo/mmpose/tree/spiideo_scenes)] [[Devkit](https://github.com/Spiideo/sskit)][[Data Download](https://research.spiideo.com/)] @@ -32,6 +32,21 @@ It is also possible to build manually: python setup.py install ``` +## Data Download +The Spiideo SoccerNet SynLoc data can be downloaded from [research.spiideo.com](https://research.spiideo.com/) after registering. Unpack the .zip files in `data/SoccerNet/SpiideoSynLoc`. To automate the download, the [`SoccerNet`](https://pypi.org/project/SoccerNet/) pypi package can be used: + +```python +from SoccerNet.Downloader import SoccerNetDownloader +mySoccerNetDownloader=SoccerNetDownloader(LocalDirectory="data/SoccerNet") +mySoccerNetDownloader.downloadDataTask(task="SpiideoSynLoc", split=["train","valid","test","challenge"]) +``` + +This will download full resolution 4K images. To instead download the smaller fullhd versions, use: + +```python +mySoccerNetDownloader.downloadDataTask(task="SpiideoSynLoc", split=["train","valid","test","challenge"], version="fullhd") +``` + ## mAP-LocSim Evaluation Tools for evaluating a solution using the proposed mAP-LocSim metrics can be found in `sskit.coco`. It's an adaption of @@ -46,7 +61,7 @@ results on the validation set stored in `validation_results.json`, use: from xtcocotools.coco import COCO from sskit.coco import LocSimCOCOeval - coco = COCO('data/annotations/val.json') + coco = COCO('data/SoccerNet/SpiideoSynLoc/annotations/val.json') coco_det = coco.loadRes("validation_results.json") coco_eval = LocSimCOCOeval(coco, coco_det, 'bbox', [0.089, 0.089], True) coco_eval.params.useSegm = None @@ -65,7 +80,7 @@ To get unbiased scores on the test-set, the score threshold found for the valida from xtcocotools.coco import COCO from sskit.coco import LocSimCOCOeval - coco = COCO('data/annotations/test.json') + coco = COCO('data/SoccerNet/SpiideoSynLoc/annotations/test.json') coco_det = coco.loadRes("test_results.json") coco_eval = LocSimCOCOeval(coco, coco_det, 'bbox', [0.089, 0.089], True) coco_eval.params.useSegm = None