-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGame.py
473 lines (418 loc) · 21.4 KB
/
Game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""
Game Class to Execute the Game
@Authors | @Student ID
+-------------------+
Reiden Rufin | 22986337
Nathan Eden | 22960674
Example Usage: python Game.py -ge 100 -gp 5 -gr 10 -u 0.0,1.0 -p 50
"""
import red_agent
import blue_agent
import green_agent
import grey_agent
import networkx as nx
import matplotlib.pyplot as plt
import matplotlib
import prettytable as pt
import random
import sys
import copy
import math
import time
class Game:
blue_energy_level = None
red_agent = red_agent.red_agent(False, 0, 0)
blue_agent = blue_agent.blue_agent(False, 0, 0)
green_team = []
grey_team = []
upper_limit = 0.0
lower_limit = 0.0
'''
Constructor for the Game
'''
def __init__(self, uncertainty_range, green_total, grey_percent, edge_probability, initial_voting, red_user, blue_user):
self.upper_limit = uncertainty_range[1]
self.lower_limit = uncertainty_range[0]
self.red_agent = red_agent.red_agent(red_user, self.lower_limit, self.upper_limit)
self.blue_agent = blue_agent.blue_agent(blue_user, self.lower_limit, self.upper_limit)
gp_as_percent = grey_percent / 100
self.blue_agent.energy_level = green_total * 1.5
print("Blue Energy Level: ", self.blue_agent.energy_level)
if(red_user):
print("You are the red agent!")
if(blue_user):
print("You are the blue agent!")
for agent_id in range(int(gp_as_percent * green_total)):
self.blue_agent.grey_agent_num += 1
if random.random() < 0.5:
self.grey_team.append(grey_agent.grey_agent("Red", agent_id))
else:
self.grey_team.append(grey_agent.grey_agent("Blue", agent_id))
#the total amount of green agents should be the total amount of green agents minus the amount of grey agents as %
new_green_total = green_total - (green_total * gp_as_percent)
voting_pop = int(new_green_total * (initial_voting/100))
for agent_id in range(int(new_green_total)):
vote_status = False
uncertainty = round(random.uniform(uncertainty_range[0], uncertainty_range[1]), 2)
connections = []
while(agent_id < voting_pop):
vote_status = True
break
self.green_team.append(green_agent.green_agent(connections, agent_id, vote_status, uncertainty))
#generate an undirected graph with n nodes with p probability (Edge_probability) of an edge between any two nodes
for agent in self.green_team:
for agent2 in self.green_team:
if agent2.unique_id > agent.unique_id:
if random.randint(0, 100) <= edge_probability:
agent.connections.append(agent2.unique_id)
agent2.connections.append(agent.unique_id)
def green_interaction(self, green_agent, neighbor_node):
#dominating (LOWER UNCERTAINTY) opinion wins
if(green_agent.uncertainty == neighbor_node.uncertainty):
#empty for now.
pass
#neighbor agent wins so update green agent
elif(green_agent.uncertainty > neighbor_node.uncertainty):
new_uncertainty = abs(green_agent.uncertainty - neighbor_node.uncertainty) * 0.125
green_agent.vote_status = neighbor_node.vote_status
green_agent.uncertainty -= new_uncertainty
green_agent.uncertainty = round(green_agent.uncertainty, 2)
pass
#green agent wins so update neighbor node
elif(green_agent.uncertainty < neighbor_node.uncertainty):
new_uncertainty = abs(neighbor_node.uncertainty - green_agent.uncertainty) * 0.125
neighbor_node.vote_status = green_agent.vote_status
neighbor_node.uncertainty -= new_uncertainty
neighbor_node.uncertainty = round(neighbor_node.uncertainty, 2)
pass
#How we change the green agent's uncertainty
# if it reaches below the lower limit then it simply becomes the lower limit
# vice versa.
def change_green_uncertainty(self, green_agent_uncertainty, uncertainty_change):
green_agent_uncertainty += uncertainty_change
if green_agent_uncertainty > self.upper_limit:
green_agent_uncertainty = self.upper_limit
elif green_agent_uncertainty < self.lower_limit:
green_agent_uncertainty = self.lower_limit
#minimax with alpha beta pruning for red agent
def red_agent_minimax(self, green_team, red_agent, depth, maximizing_player, blue_agent, alpha, beta):
red_agent_messages = []
for messages in red_agent.messages:
red_agent_messages.append(red_agent.messages[messages])
blue_agent_messages = []
for messages in blue_agent.messages:
blue_agent_messages.append(blue_agent.messages[messages])
if(depth == 0 or len(red_agent_messages) == 0):
return None, red_agent.evaluate(green_team)
if(maximizing_player):
value = -math.inf
message_to_send = random.choice(blue_agent_messages)
for message in red_agent_messages:
green_team_copy = copy.deepcopy(green_team)
#creates the hypothetical move using a copy of the current game state
for green_agent in green_team_copy:
red_uncertainty_change, follower_loss = red_agent.red_move(green_agent, message)
self.change_green_uncertainty(green_agent.uncertainty, red_uncertainty_change)
new_score = self.red_agent_minimax(green_team_copy, red_agent, depth - 1, False, blue_agent, alpha, beta)[1]
if(new_score > value):
value = new_score
message_to_send = message
alpha = max(alpha, value)
if alpha >= beta:
break
return message_to_send, value
else:
value = math.inf
message_to_send = random.choice(red_agent_messages)
for message in red_agent_messages:
green_team_copy = copy.deepcopy(green_team)
for green_agent in green_team_copy:
blue_uncertainty_change, energy_loss = blue_agent.blue_move(green_agent, message)
self.change_green_uncertainty(green_agent.uncertainty, blue_uncertainty_change)
new_score = self.red_agent_minimax(green_team_copy, red_agent, depth - 1, True, blue_agent, alpha, beta)[1]
if(new_score < value):
value = new_score
message_to_send = message
beta = min(beta, value)
if alpha >= beta:
break
return message_to_send, value
#minimax with alpha beta pruning for blue agent
def blue_agent_minimax(self, green_team, blue_agent, depth, maximizing_player, red_agent, grey_agent, alpha, beta):
red_agent_messages = []
for messages in red_agent.messages:
red_agent_messages.append(red_agent.messages[messages])
blue_agent_messages = []
no_send_grey_agent = False
#As the grey agent cannot summon another grey agent,
# we do not add the "summon grey agent" option for this section
if(grey_agent):
no_send_grey_agent = True
for messages in range(len(blue_agent.messages)-1):
blue_agent_messages.append(blue_agent.messages[messages])
else:
for messages in blue_agent.messages:
blue_agent_messages.append(blue_agent.messages[messages])
blue_agent_copy = copy.deepcopy(blue_agent)
if(depth == 0 or len(blue_agent_messages) == 0):
return None, blue_agent.evaluate(green_team)
if(maximizing_player):
value = -math.inf
message_to_send = random.choice(red_agent_messages)
for message in blue_agent_messages:
green_team_copy = copy.deepcopy(green_team)
for green_agent in green_team_copy:
blue_uncertainty_change, energy_loss = blue_agent_copy.blue_move(green_agent, message)
self.change_green_uncertainty(green_agent.uncertainty, blue_uncertainty_change)
new_score = self.blue_agent_minimax(green_team_copy, blue_agent_copy, depth - 1, False, red_agent, no_send_grey_agent, alpha, beta)[1]
if(new_score > value):
value = new_score
message_to_send = message
alpha = max(alpha, value)
if alpha >= beta:
break
return message_to_send, value
else:
value = math.inf
message_to_send = random.choice(blue_agent_messages)
for message in blue_agent_messages:
green_team_copy = copy.deepcopy(green_team)
for green_agent in green_team_copy:
red_uncertainty_change, follower_loss = red_agent.red_move(green_agent, message)
self.change_green_uncertainty(green_agent.uncertainty, red_uncertainty_change)
new_score = self.blue_agent_minimax(green_team_copy, blue_agent_copy, depth - 1, True, red_agent, no_send_grey_agent, alpha, beta)[1]
if(new_score < value):
value = new_score
message_to_send = message
beta = min(beta, value)
if alpha >= beta:
break
return message_to_send, value
#creates the network graph to display
def visualisation(self, green_team):
#generates a graph showing the network status between green, blue and red agent(s)
plt.figure(1,figsize=(12,12))
green_connections = {}
red_connections = {}
color_map = []
g = nx.Graph()
#Adding Red Agent and Blue Agent
g.add_node("RED")
g.add_node("BLUE")
color_map.append("Red")
color_map.append("Blue")
for green_agent in green_team:
green_connections.update({green_agent.unique_id : green_agent.connections})
red_connections.update({green_agent.unique_id : green_agent.communicate})
#Paint nodes blue is they ARE voting, red if they ARE NOT voting
if green_agent.vote_status == True:
color_map.append("Blue")
else:
color_map.append("Red")
for key, value in green_connections.items():
for v in value:
g.add_edge(key, v)
for key, value in red_connections.items():
g.add_edge(key, "BLUE")
if value == True:
g.add_edge(key, "RED")
nx.draw(g, node_color = color_map, with_labels=True)
plt.show()
#creates the histogram plot for uncertainty distribution
def uncertainties_graph(self, uncertainties):
matplotlib.use('TkAgg')
fig, ax = plt.subplots()
ax.hist(uncertainties, bins = 50, color = 'red', edgecolor = 'blue')
ax.set_title('Green Agent Uncertainty Distribution Graph', size = 15)
ax.set_xlabel('Uncertainty Level', size = 18)
ax.set_ylabel('Number of Nodes', size = 18)
plt.show()
return plt
def execute(self):
print("+-------------------------------------+")
#Every round...
turn = 0
voting_pop = 0
uncertainties = []
while self.blue_agent.energy_level > 0:
if(self.blue_agent.energy_level <= 0):
break
print("Starting Blue Energy: ", self.blue_agent.energy_level)
total_voting = 0
red_message = ""
if(red_user):
red_message = self.red_agent.send_message()
else:
red_message = self.red_agent_minimax(self.green_team, self.red_agent, 2, True, self.blue_agent, -math.inf, math.inf)[0]
print("RED AI SENT --> ", red_message)
total_follower_loss = 0
#RED INTERACTION (RED TURN)
for green_agent in self.green_team:
red_uncertainty_change, follower_loss = self.red_agent.red_move(green_agent, red_message)
total_follower_loss += follower_loss
self.change_green_uncertainty(green_agent.uncertainty, red_uncertainty_change)
#BLUE INTERACTION (BLUE TURN)
total_energy_loss = 0
blue_message = ""
if(blue_user):
blue_message = self.blue_agent.send_message()
else:
blue_message = self.blue_agent_minimax(self.green_team, self.blue_agent, 3, True, self.red_agent, True, -math.inf, math.inf)[0]
# print("after minimax BLUE ENERGY: ", self.blue_agent.energy_level)
print("BLUE AI SENT --> ", blue_message)
#handle if the message is to summon a grey agent
if(blue_message == "summon grey agent"):
grey_agent = random.choice(self.grey_team)
print("Grey Agent: ", grey_agent.unique_id, "has been summoned!", "Team: ", grey_agent.team)
grey_message = ""
if(grey_agent.team == "Red"):
grey_message = self.red_agent_minimax(self.green_team, self.red_agent, 2, True, self.blue_agent, -math.inf, math.inf)[0]
elif(grey_agent.team == "Blue"):
grey_message = self.blue_agent_minimax(self.green_team, self.blue_agent, 3, True, self.red_agent, True, -math.inf, math.inf)[0]
print("The Grey Agent Sent ----->", grey_message)
uncertainty_change = 0.0
for green_agent in self.green_team:
if(grey_agent.team == "Red"):
uncertainty_change = grey_agent.red_move(green_agent, grey_message)
# print("uncertainty change for red grey agent: ", uncertainty_change)
else:
uncertainty_change = grey_agent.blue_move(green_agent, grey_message)
# print("uncertainty change for blue grey agent: ", uncertainty_change)
self.change_green_uncertainty(green_agent.uncertainty, uncertainty_change)
self.grey_team.remove(grey_agent)
self.blue_agent.grey_agent_num -= 1
else:
for green_agent in self.green_team:
uncertainty_change, energy_loss = self.blue_agent.blue_move(green_agent, blue_message)
total_energy_loss += energy_loss
self.change_green_uncertainty(green_agent.uncertainty, uncertainty_change)
print("energy loss this round: ", total_energy_loss)
#cutoff communication based on the number of follower loss,
#that is set communicate to False.
index = 0
while(index < round(total_follower_loss)):
green_agent = random.choice(self.green_team)
if(green_agent.communicate):
green_agent.communicate = False
self.red_agent.followers -= 1
index += 1
#green interaction with each other per round
green_nodes_visited = []
for green_agent in self.green_team:
if(green_agent.connections):
for neighbor in green_agent.connections:
#we only want to visit edges once
if(neighbor > green_agent.unique_id):
continue
else:
if((green_agent.unique_id, neighbor) not in green_nodes_visited):
green_nodes_visited.append((green_agent.unique_id, neighbor))
self.green_interaction(green_agent, self.green_team[neighbor])
#Displays the network graph followed by the uncertainty distribution graph
print("Showing current status of the population...")
self.visualisation(self.green_team)
for green_agent in self.green_team:
uncertainties.append(green_agent.uncertainty)
lista = self.uncertainties_graph(uncertainties)
print("Status of Green Agents")
for green_agent in self.green_team:
# print("Green Agent: ", green_agent.unique_id, "vote_status: ", green_agent.vote_status, "uncertainty: ", green_agent.uncertainty)
if(green_agent.vote_status):
total_voting += 1
if(green_agent.communicate):
self.red_agent.followers += 1
print("----------------------------------")
print("Total Population:", len(self.green_team))
print("Total Voting Population: ", total_voting)
voting_pop = total_voting
print("Total Red Followers:", self.red_agent.followers)
#reset the count
self.red_agent.followers = 0
total_follower_loss = 0
self.blue_agent.energy_level - total_energy_loss
print("----------------------------------")
turn += 1
print("================== NEXT ROUND ==================\n")
print("----------------------------------")
#end of game
print("Blue has run out of energy!\n")
print("The game lasted for",turn, "rounds")
vote_count = 0
for green_agent in self.green_team:
# print("Green Agent: ", green_agent.unique_id, "vote_status: ", green_agent.vote_status, "uncertainty: ", green_agent.uncertainty)
if(green_agent.vote_status):
vote_count += 1
winner = ""
if(vote_count > len(self.green_team)/2):
print("The Winner is Blue!!!")
winner = "Blue"
elif(vote_count == len(self.green_team)/2):
print("The Game is a Tie!!!")
winner = "Tie"
elif(vote_count < len(self.green_team)/2):
print("The Winner is Red!!!")
winner = "Red"
with open("results.txt", "a") as f:
f.write("Winner : " + str(winner) + " |" + " Voting Population : " + str(voting_pop) + " |" + " Total Population : " + str(len(self.green_team)) + "\n")
pass
#---------------------------------EVERYTHING BELOW RELATE TO THE MAIN EXECUTION----------------------------
def print_usage():
print("""
Usage: python Game.py -ge [n] -gp [%] -gr [% gr_agents] -u [x,y] -p [z]
-ge: number of green agents
-gp: probability of connections between green agents
-gr: percentage of green_pop that are grey_agents
-u: x,y, is the uncertainty range
E.g. ( -u 0,1 ) will give us an uncertainty range
between 0 and 1
-p: percentage of green agents that want to vote initially
""")
'''
Execute.
'''
if __name__ == "__main__":
start_time = time.time()
n = len(sys.argv)
#change this check if we're adding more
if(n != 11):
print_usage()
sys.exit(1)
total_Green = int(sys.argv[2])
probability_of_connections = float(sys.argv[4])
grey_agent_percentage = int(sys.argv[6])
uncertainty_range = sys.argv[8]
uncertainty_range = [float(x.strip()) for x in uncertainty_range.split(',')]
initial_voting = int(sys.argv[10])
sentence = "Confirming Your Selection...\n"
sentence += '\x1b[6;30;42m' +"- Total Green Agents: " + str(total_Green) + '\x1b[0m' + "\n"
sentence += '\x1b[1;33;45m' +"- Probability of Connections: " + str(probability_of_connections) + '\x1b[0m' + "\n"
sentence += '\x1b[0;34;47m' +"- % of pop that are grey agents: " + str(grey_agent_percentage) + '\x1b[0m' + "\n"
sentence += '\x1b[1;33;41m' +"- uncertainty_range: " + str(uncertainty_range) + '\x1b[0m' + "\n"
sentence += '\x1b[0;36;44m' +"- initial_voting: " + str(initial_voting) + '\x1b[0m' + "\n"
width = 650
t = pt.PrettyTable()
t.field_names = ['Red vs Blue Political Simulator']
[t.add_row([sentence[i:i + width]]) for i in range(0, len(sentence), width)]
print(t)
confirm = input("Confirm Your Selection? (y/n): ")
if(confirm != "y"):
print("Exiting...")
sys.exit(1)
red_user = False
blue_user = False
playing = input("Do you wish to play? (y/n): ")
if playing == "y":
choice = input("Do you wish to play as red or blue? (r/b): ")
if choice == "r":
red_user = True
elif choice == "b":
blue_user = True
else:
print("Invalid choice, exiting...")
sys.exit(1)
else:
print("You have chosen not to play. The AI's will instead play.")
Game = Game(uncertainty_range, total_Green, grey_agent_percentage, probability_of_connections, initial_voting, red_user, blue_user)
Game.execute()
#Was only used explicitly for testing runtime
#print ("took", time.time() - start_time, "to run")