-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattPool_main.py
181 lines (154 loc) · 6.18 KB
/
attPool_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
"""
Training an attentional pooling based CNN for image classification with CIFAR10
"""
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
########################################################################
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1]
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
########################################################################
# 2. Define a Convolution Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Copy the neural network from the Neural Networks section before and modify it to
# take 3-channel images (instead of 1-channel images as it was defined).
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, padding=1, stride=stride, bias=False)
class SimpleBlock(nn.Module):
def __init__(self, inplanes, planes1, planes2, stride=1):
super(SimpleBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes1, stride)
self.bn1 = nn.BatchNorm2d(planes1)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(2, 2)
self.drop = nn.Dropout(0.5)
self.conv2 = conv3x3(planes1, planes2)
self.conv3 = conv3x3(planes2, planes2)
self.bn2 = nn.BatchNorm2d(planes2)
self.fc1 = nn.Linear(128 * 4 * 4, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 10)
def _make_layer(self, block, channels):
layers = []
layers.append(block(channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.drop(out)
# out = self.pool(self.relu(out))
out = self.pool(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.drop(out)
out = self.pool(out)
out = self.conv3(out)
out = self.bn2(out)
out = self.relu(out)
out = self.drop(out)
out = self.pool(out)
out = out.view(-1, out.size()[1] * out.size()[2] * out.size()[3])
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
net = SimpleBlock(3, 64, 128)
net.cuda()
########################################################################
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss and SGD with momentum
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# optimizer = optim.Adam(net.parameters(), lr=0.001, momentum=0.9)
################################################### #####################
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.data[0]
if (i+1) % 200 == 0: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
print('Finished Training')
########################################################################
# 5. Test the network on the test data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
########################################################################
correct = 0
total = 0
for data in testloader:
images, labels = data
images, labels = images.cuda(), labels.cuda()
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
# ########################################################################
# # That looks waaay better than chance, which is 10% accuracy (randomly picking
# # a class out of 10 classes).
# # Seems like the network learnt something.
# #
# # Hmmm, what are the classes that performed well, and the classes that did
# # not perform well:
#
# class_correct = list(0. for i in range(10))
# class_total = list(0. for i in range(10))
# for data in testloader:
# images, labels = data
# images, labels = images.cuda(), labels.cuda()
# outputs = net(Variable(images))
# _, predicted = torch.max(outputs.data, 1)
# c = (predicted == labels).squeeze()
# for i in range(4):
# label = labels[i]
# class_correct[label] += c[i]
# class_total[label] += 1
#
#
# for i in range(10):
# print('Accuracy of %5s : %2d %%' % (
# classes[i], 100 * class_correct[i] / class_total[i]))