-
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathTD3.py
273 lines (210 loc) · 9.01 KB
/
TD3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import gym
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3)
# Paper: https://arxiv.org/abs/1802.09477
class Actor(nn.Module):
def __init__(self, input_size, hidden_size, output_size, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(input_size, hidden_size)
self.l2 = nn.Linear(hidden_size, hidden_size)
self.l3 = nn.Linear(hidden_size, output_size)
self.max_action = max_action
def forward(self, state):
a = F.relu(self.l1(state))
a = F.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
class Critic(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Critic, self).__init__()
# Q1 architecture
self.l1 = nn.Linear(input_size + output_size, hidden_size)
self.l2 = nn.Linear(hidden_size, hidden_size)
self.l3 = nn.Linear(hidden_size, 1)
# Q2 architecture
self.l4 = nn.Linear(input_size + output_size, hidden_size)
self.l5 = nn.Linear(hidden_size, hidden_size)
self.l6 = nn.Linear(hidden_size, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
class ReplayBuffer(object):
def __init__(self, state_dim, action_dim, max_size=int(1e6)):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.reward = np.zeros((max_size, 1))
self.not_done = np.zeros((max_size, 1))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def add(self, state, action, next_state, reward, done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.not_done[self.ptr] = 1. - done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
ind = np.random.randint(0, self.size, size=batch_size)
return (
torch.FloatTensor(self.state[ind]).to(self.device),
torch.FloatTensor(self.action[ind]).to(self.device),
torch.FloatTensor(self.next_state[ind]).to(self.device),
torch.FloatTensor(self.reward[ind]).to(self.device),
torch.FloatTensor(self.not_done[ind]).to(self.device)
)
class Skylark_TD3():
def __init__(
self,
env,
gamma=0.99,
tau=0.005,
policy_noise=0.2,
noise_clip=0.5,
policy_freq=2):
self.env = env
# Varies by environment
self.state_dim = self.env.observation_space.shape[0]
self.action_dim = self.env.action_space.shape[0]
self.max_action = float(self.env.action_space.high[0])
self.actor = Actor(self.state_dim, 256, self.action_dim, self.max_action).to(device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(
self.actor.parameters(), lr=3e-4)
self.critic = Critic(self.state_dim, 256, self.action_dim).to(device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(
self.critic.parameters(), lr=3e-4)
self.discount = gamma
self.tau = tau
self.policy_noise = policy_noise
self.noise_clip = noise_clip
self.policy_freq = policy_freq
self.start_timesteps = 1e3 # Time steps initial random policy is used
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.total_iteration = 0
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def learn(self, replay_buffer, batch_size=100):
self.total_iteration += 1
# Sample replay buffer
state, action, next_state, reward, not_done = replay_buffer.sample(
batch_size)
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (
torch.randn_like(action) * self.policy_noise
).clamp(-self.noise_clip, self.noise_clip)
next_action = (
self.actor_target(next_state) + noise
).clamp(-self.max_action, self.max_action)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + not_done * self.discount * target_Q
# Get current Q estimates
current_Q1, current_Q2 = self.critic(state, action)
# Compute critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + \
F.mse_loss(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if self.total_iteration % self.policy_freq == 0:
# Compute actor losse
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data)
def train(self, num_episodes, batch_size = 256):
replay_buffer = ReplayBuffer(self.state_dim, self.action_dim)
episode_num = 0
for i in range(1, num_episodes):
state, done = self.env.reset(), False
episode_reward = 0
episode_timesteps = 0
for t in range(1, 1000):
episode_timesteps += 1
# Select action randomly or according to policy
if i * 1000 < self.start_timesteps:
action = self.env.action_space.sample()
else:
action = (
self.select_action(np.array(state))
+ np.random.normal(0, self.max_action * self.expl_noise, size=self.action_dim)
).clip(-self.max_action, self.max_action)
# Perform action
next_state, reward, done, _ = self.env.step(action)
done_bool = float(done) if episode_timesteps < 1000 else 0
# Store data in replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train agent after collecting sufficient data
if i * 1000 >= self.start_timesteps:
self.learn(replay_buffer, batch_size)
print('Episode {} : {}'.format(i, episode_reward))
def save(self, filename):
torch.save(self.critic.state_dict(), filename + "_critic")
torch.save(self.critic_optimizer.state_dict(),
filename + "_critic_optimizer")
torch.save(self.actor.state_dict(), filename + "_actor")
torch.save(self.actor_optimizer.state_dict(),
filename + "_actor_optimizer")
def load(self, filename):
self.critic.load_state_dict(torch.load(filename + "_critic"))
self.critic_optimizer.load_state_dict(
torch.load(filename + "_critic_optimizer"))
self.critic_target = copy.deepcopy(self.critic)
self.actor.load_state_dict(torch.load(filename + "_actor"))
self.actor_optimizer.load_state_dict(
torch.load(filename + "_actor_optimizer"))
self.actor_target = copy.deepcopy(self.actor)
if __name__ == "__main__":
use_ray = False
num_episodes = 1000
env = gym.make("Pendulum-v0").env
if use_ray:
import ray
from ray import tune
tune.run(
'TD3',
config={
'env': "Pendulum-v0",
'num_workers': 1,
# 'env_config': {}
}
)
else:
td3_agent = Skylark_TD3(env)
td3_agent.train(num_episodes)