forked from mxgmn/WaveFunctionCollapse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.cs
233 lines (194 loc) · 6.44 KB
/
Model.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Copyright (C) 2016 Maxim Gumin, The MIT License (MIT)
using System;
abstract class Model
{
protected bool[][] wave;
protected int[][][] propagator;
int[][][] compatible;
protected int[] observed;
(int, int)[] stack;
int stacksize, observedSoFar;
protected int MX, MY, T, N;
protected bool periodic, ground;
protected double[] weights;
double[] weightLogWeights, distribution;
protected int[] sumsOfOnes;
double sumOfWeights, sumOfWeightLogWeights, startingEntropy;
protected double[] sumsOfWeights, sumsOfWeightLogWeights, entropies;
public enum Heuristic { Entropy, MRV, Scanline };
Heuristic heuristic;
protected Model(int width, int height, int N, bool periodic, Heuristic heuristic)
{
MX = width;
MY = height;
this.N = N;
this.periodic = periodic;
this.heuristic = heuristic;
}
void Init()
{
wave = new bool[MX * MY][];
compatible = new int[wave.Length][][];
for (int i = 0; i < wave.Length; i++)
{
wave[i] = new bool[T];
compatible[i] = new int[T][];
for (int t = 0; t < T; t++) compatible[i][t] = new int[4];
}
distribution = new double[T];
observed = new int[MX * MY];
weightLogWeights = new double[T];
sumOfWeights = 0;
sumOfWeightLogWeights = 0;
for (int t = 0; t < T; t++)
{
weightLogWeights[t] = weights[t] * Math.Log(weights[t]);
sumOfWeights += weights[t];
sumOfWeightLogWeights += weightLogWeights[t];
}
startingEntropy = Math.Log(sumOfWeights) - sumOfWeightLogWeights / sumOfWeights;
sumsOfOnes = new int[MX * MY];
sumsOfWeights = new double[MX * MY];
sumsOfWeightLogWeights = new double[MX * MY];
entropies = new double[MX * MY];
stack = new (int, int)[wave.Length * T];
stacksize = 0;
}
public bool Run(int seed, int limit)
{
if (wave == null) Init();
Clear();
Random random = new(seed);
for (int l = 0; l < limit || limit < 0; l++)
{
int node = NextUnobservedNode(random);
if (node >= 0)
{
Observe(node, random);
bool success = Propagate();
if (!success) return false;
}
else
{
for (int i = 0; i < wave.Length; i++) for (int t = 0; t < T; t++) if (wave[i][t]) { observed[i] = t; break; }
return true;
}
}
return true;
}
int NextUnobservedNode(Random random)
{
if (heuristic == Heuristic.Scanline)
{
for (int i = observedSoFar; i < wave.Length; i++)
{
if (!periodic && (i % MX + N > MX || i / MX + N > MY)) continue;
if (sumsOfOnes[i] > 1)
{
observedSoFar = i + 1;
return i;
}
}
return -1;
}
double min = 1E+4;
int argmin = -1;
for (int i = 0; i < wave.Length; i++)
{
if (!periodic && (i % MX + N > MX || i / MX + N > MY)) continue;
int remainingValues = sumsOfOnes[i];
double entropy = heuristic == Heuristic.Entropy ? entropies[i] : remainingValues;
if (remainingValues > 1 && entropy <= min)
{
double noise = 1E-6 * random.NextDouble();
if (entropy + noise < min)
{
min = entropy + noise;
argmin = i;
}
}
}
return argmin;
}
void Observe(int node, Random random)
{
bool[] w = wave[node];
for (int t = 0; t < T; t++) distribution[t] = w[t] ? weights[t] : 0.0;
int r = distribution.Random(random.NextDouble());
for (int t = 0; t < T; t++) if (w[t] != (t == r)) Ban(node, t);
}
bool Propagate()
{
while (stacksize > 0)
{
(int i1, int t1) = stack[stacksize - 1];
stacksize--;
int x1 = i1 % MX;
int y1 = i1 / MX;
for (int d = 0; d < 4; d++)
{
int x2 = x1 + dx[d];
int y2 = y1 + dy[d];
if (!periodic && (x2 < 0 || y2 < 0 || x2 + N > MX || y2 + N > MY)) continue;
if (x2 < 0) x2 += MX;
else if (x2 >= MX) x2 -= MX;
if (y2 < 0) y2 += MY;
else if (y2 >= MY) y2 -= MY;
int i2 = x2 + y2 * MX;
int[] p = propagator[d][t1];
int[][] compat = compatible[i2];
for (int l = 0; l < p.Length; l++)
{
int t2 = p[l];
int[] comp = compat[t2];
comp[d]--;
if (comp[d] == 0) Ban(i2, t2);
}
}
}
return sumsOfOnes[0] > 0;
}
void Ban(int i, int t)
{
wave[i][t] = false;
int[] comp = compatible[i][t];
for (int d = 0; d < 4; d++) comp[d] = 0;
stack[stacksize] = (i, t);
stacksize++;
sumsOfOnes[i] -= 1;
sumsOfWeights[i] -= weights[t];
sumsOfWeightLogWeights[i] -= weightLogWeights[t];
double sum = sumsOfWeights[i];
entropies[i] = Math.Log(sum) - sumsOfWeightLogWeights[i] / sum;
}
void Clear()
{
for (int i = 0; i < wave.Length; i++)
{
for (int t = 0; t < T; t++)
{
wave[i][t] = true;
for (int d = 0; d < 4; d++) compatible[i][t][d] = propagator[opposite[d]][t].Length;
}
sumsOfOnes[i] = weights.Length;
sumsOfWeights[i] = sumOfWeights;
sumsOfWeightLogWeights[i] = sumOfWeightLogWeights;
entropies[i] = startingEntropy;
observed[i] = -1;
}
observedSoFar = 0;
if (ground)
{
for (int x = 0; x < MX; x++)
{
for (int t = 0; t < T - 1; t++) Ban(x + (MY - 1) * MX, t);
for (int y = 0; y < MY - 1; y++) Ban(x + y * MX, T - 1);
}
Propagate();
}
}
public abstract void Save(string filename);
protected static int[] dx = { -1, 0, 1, 0 };
protected static int[] dy = { 0, 1, 0, -1 };
static int[] opposite = { 2, 3, 0, 1 };
}