-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_function.py
417 lines (347 loc) · 15.8 KB
/
plot_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix
from itertools import cycle
# my import functions
import constants as const
# ************************************** #
# *********** PLOT FUNCTIONS *********** #
# ************************************** #
# Create a new directory
def makedir(dirpath):
"""
Create a directory, given a path
:param dirpath: directory location
"""
# check if dir exists
if not os.path.exists(dirpath):
os.makedirs(dirpath, exist_ok=True)
print("\n> Directory [{}] has been created successfully!".format(dirpath))
def show_and_save_plot(show, save, plot_folder, plot_name, plot_extension, dpi=96):
"""
Manage the display and saving of a plot.
:param show: If True, display the plot.
:param save: If True, save the plot.
:param plot_folder: The directory where the plot will be saved.
:param plot_name: The name of the plot file (excluding the extension).
:param plot_extension: The file extension of the plot (e.g., 'png', 'jpg').
:param dpi: Dots per inch (resolution) for the saved image.
Default is 96.
:return: None
"""
if show and save: # show and store plot
makedir(plot_folder)
plt.savefig(os.path.join(plot_folder, plot_name + plot_extension), dpi=dpi)
plt.show()
elif show and not save: # show plot
plt.show()
elif save and not show: # store plot
makedir(plot_folder)
plt.savefig(os.path.join(plot_folder, plot_name + plot_extension), dpi=dpi)
plt.close()
else: # do not show or save
plt.close()
def plot_correlation_matrix(input_data, show_on_screen=True, store_in_folder=True):
correlation_value = 0.9
correlation_matrix = input_data.corr(method="pearson", min_periods=40)
correlated_features = set()
for i in range(len(correlation_matrix.columns)):
for j in range(i):
if abs(correlation_matrix.iloc[i, j]) >= correlation_value:
correlated_features.add(correlation_matrix.columns[i])
plt.figure(figsize=(16, 8.5))
sns.set(font_scale=0.45)
sns.heatmap(correlation_matrix,
cmap="coolwarm",
annot=True,
fmt=".2g",
annot_kws={"size": 5},
xticklabels=input_data.keys(),
yticklabels=input_data.keys())
plt.title("Correlation between features", fontsize=18)
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=const.PLOT_FOLDER,
plot_name=const.CORR_MATR_TAG,
plot_extension=const.JPG
)
def plot_pca_opt_num_of_components(input_data, cumulative_evr, show_on_screen=True, store_in_folder=True):
plt.figure(figsize=(16, 8))
plt.plot(range(1, len(input_data.columns) + 1), cumulative_evr, marker="o", linestyle="--")
plt.axhline(y=const.VARIANCE_RATIO, color="red", linestyle="-")
plt.text(24, 0.81, "80% cut-off threshold", color="red", fontsize=16)
plt.xticks(range(1, len(input_data.columns) + 1), fontsize=10)
plt.yticks(fontsize=10)
plt.xlabel("Number of Components", fontsize=18)
plt.ylabel("Cumulative Explained Variance (%)", fontsize=18)
plt.title("The number of components needed to explain variance", fontsize=22)
plt.grid()
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLUSTERING_PLOT_FOLDER),
plot_name=const.OPT_N_COMP_TAG,
plot_extension=const.JPG
)
def plot_clusters(input_pca_data, centroids, labels, colors_list, genres_list, show_on_screen=True,
store_in_folder=True):
pca_1, pca_2, genre_data = input_pca_data["PC1"], input_pca_data["PC2"], input_pca_data["genre"]
colors = {value: key for value, key in enumerate(colors_list)}
genres = {value: key for value, key in enumerate(genres_list)}
df = pd.DataFrame({"pca_1": pca_1, "pca_2": pca_2, "label": labels, "genre": genre_data})
groups = df.groupby("label")
plt.style.use("ggplot") # plot style
fig, ax = plt.subplots(figsize=(16, 8))
for label, group in groups:
genre = group["genre"]
plt.scatter(x=group.pca_1, y=group.pca_2, label=genres[genre], color=colors[genre], edgecolors="white",
alpha=0.6)
ax.tick_params(axis="x", which="both", bottom="off", top="off", labelbottom="off")
ax.tick_params(axis="y", which="both", left="off", top="off", labelleft="off")
plt.plot(centroids[:, 0], centroids[:, 1], "*", label="Centroids", markerfacecolor="white",
markersize=15,
markeredgewidth=1,
markeredgecolor="black")
ax.legend(title="Genres:", fontsize=10)
ax.set_title("PCA K-Means Clustering", fontsize=22)
plt.xlabel(xlabel="PC1", fontsize=16)
plt.ylabel(ylabel="PC2", fontsize=16)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLUSTERING_PLOT_FOLDER),
plot_name=const.K_MEAN_PCA_CC_TAG,
plot_extension=const.JPG
)
def plot_kmeans_confusion_matrix(data, labels, genre_list, show_on_screen=True, store_in_folder=True):
data["predicted_label"] = labels
conf_matrix_data = metrics.confusion_matrix(data["genre"], data["predicted_label"])
conf_matrix = pd.DataFrame(conf_matrix_data, columns=np.unique(genre_list), index=np.unique(genre_list))
plt.figure(figsize=(16, 8))
ax = sns.heatmap(conf_matrix,
cmap="Blues",
annot=True,
fmt="g",
annot_kws={"size": 10},
square=True,
xticklabels=genre_list,
yticklabels=genre_list)
ax.tick_params(labelsize=10)
plt.xlabel("Predicted Labels", fontsize=16)
plt.ylabel("True Labels", fontsize=16)
plt.title("Confusion Matrix for K-Means", fontsize=22)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLUSTERING_PLOT_FOLDER),
plot_name=const.K_MEAN_CONF_MATR_TAG,
plot_extension=const.JPG
)
def plot_confusion_matrix(model, model_name, X_train, y_train, X_test, y_test,
show_on_screen=True, store_in_folder=True):
# Fit the model
model.fit(X_train, y_train)
# Predict the target vector
predicts = model.predict(X_test)
# Plot confusion matrix
conf_matrix = confusion_matrix(y_test, predicts)
plt.figure(figsize=(16, 8))
ax = sns.heatmap(conf_matrix,
cmap="Blues",
annot=True,
fmt="g",
annot_kws={"size": 10},
square=True,
xticklabels=const.GENRES_LIST,
yticklabels=const.GENRES_LIST)
ax.tick_params(labelsize=10)
plt.xlabel(xlabel="Predicted Labels", fontsize=16)
plt.ylabel(ylabel="True Labels", fontsize=16)
plt.title("Confusion Matrix - {}".format(model_name), fontsize=22)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLASSIFICATION_PLOT_FOLDER),
plot_name=const.CONF_MATR_TAG,
plot_extension=const.JPG
)
def plot_roc(y_test, y_score, operation_name, genres_list, type_of_learning="SL",
show_on_screen=True, store_in_folder=True):
genres = genres_list
ordinal_position = []
for index in range(0, len(genres_list)):
ordinal_position.append(index)
test_label = preprocessing.label_binarize(y_test, classes=ordinal_position)
if type_of_learning == "SL":
y_label = y_score
else:
y_label = preprocessing.label_binarize(y_score, classes=ordinal_position)
n_classes = test_label.shape[1]
false_positive_rate = dict()
true_positive_rate = dict()
auc_score = dict()
for i in range(n_classes):
false_positive_rate[i], true_positive_rate[i], _ = metrics.roc_curve(test_label[:, i], y_label[:, i])
auc_score[i] = metrics.auc(false_positive_rate[i], true_positive_rate[i])
colors = cycle(const.COLORS_LIST)
plt.figure(figsize=(16, 8))
for i, color in zip(range(n_classes), colors):
plt.plot(false_positive_rate[i], true_positive_rate[i], color=color, lw=1.5,
label="ROC curve for {0} (area = {1:0.2f})"
"".format(genres[i], auc_score[i]))
plt.plot([0, 1], [0, 1], "k--", lw=1.5)
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate (FPR)", fontsize=24)
plt.ylabel("True Positive Rate (TPR)", fontsize=24)
plt.title("Receiver Operating Characteristic Curve for " + operation_name.replace("_", "").upper(), fontsize=24)
plt.legend(loc="lower right", prop={"size": 12})
if type_of_learning == "SL": # plot roc curve for supervised learning
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLASSIFICATION_PLOT_FOLDER),
plot_name=operation_name.replace(" ", "_") + const.ROC_CURVE_TAG,
plot_extension=const.JPG
)
else: # plot roc curve for unsupervised learning (k-means clustering)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLUSTERING_PLOT_FOLDER),
plot_name=operation_name.replace(" ", "_") + const.ROC_CURVE_TAG,
plot_extension=const.JPG
)
def plot_comparison_of_predictions_by_genre(y_test, y_pred, genres_list, model_name, show_on_screen=True,
store_in_folder=True):
compute_confusion_matrix = metrics.confusion_matrix(y_test, y_pred)
bar = pd.DataFrame(compute_confusion_matrix, columns=genres_list, index=genres_list)
ax = bar.plot(kind="bar", figsize=(16, 8), fontsize=10, width=0.8, color=const.COLORS_LIST, edgecolor="black")
ax.legend(loc="upper right", fontsize=8)
plt.title("Classification Predictions By Genres - " + model_name.upper(), fontsize=18)
plt.xlabel("Genres", fontsize=14)
plt.xticks(rotation=0)
plt.ylabel("Occurrences", fontsize=14)
for plot in ax.patches:
if plot.get_height() > 0:
ax.annotate(format(plot.get_height()) + "%",
(plot.get_x() + (plot.get_width() / 2), plot.get_height()), ha="center",
va="center", xytext=(0.3, 10), textcoords="offset points", fontsize=5, rotation=90)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLASSIFICATION_PLOT_FOLDER),
plot_name=model_name.replace(" ", "_") + const.PREDICT_BY_GENRES_TAG,
plot_extension=const.JPG
)
def plot_predictions_evaluation(input_data, model_name, genres_list, show_on_screen=True, store_in_folder=True):
ax = input_data.plot(kind="bar", figsize=(16, 8), fontsize=14,
width=0.6, color=const.PRED_EVA_LIST, edgecolor="black")
ax.set_xticklabels(genres_list, rotation=0)
ax.legend(["Real Value", "Predict Value"], fontsize=9, loc="upper right")
plt.title("Predictions Evaluation - " + model_name.upper(), fontsize=22)
plt.xlabel("Genres", fontsize=18)
plt.ylabel("Occurrences", fontsize=18)
for p in ax.patches:
ax.annotate(format(p.get_height()),
(p.get_x() + (p.get_width() / 2), p.get_height()), ha="center", va="center",
xytext=(0, 5), textcoords="offset points", fontsize=10, rotation=0)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLASSIFICATION_PLOT_FOLDER),
plot_name=model_name + const.PREDICT_EV_TAG,
plot_extension=const.JPG
)
def plot_classification_report(clf_report, model_name, show_on_screen=True, store_in_folder=True):
# exclude support column
df = clf_report.loc[:, clf_report.columns != "support"]
plt.figure(figsize=(16, 8))
ax = sns.heatmap(
df,
cmap="RdBu",
annot=True,
fmt="g",
annot_kws={"size": 12},
linewidths=1,
linecolor="black",
cbar=True,
clip_on=False
)
ax.xaxis.set_ticks_position("top")
plt.title("{} Classification report".format(model_name), fontsize=22)
plt.yticks(fontsize=15)
plt.xticks(fontsize=15)
plt.xlabel(xlabel="Metrics", fontsize=18)
plt.ylabel(ylabel="Genres", fontsize=18)
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLASSIFICATION_PLOT_FOLDER),
plot_name=model_name + const.CLF_REPORT_TAG,
plot_extension=const.JPG
)
# Plot silhouette score
def plot_silhouette(silhouette_score_values, number_of_clusters, min_num_k, max_num_k,
show_on_screen=True, store_in_folder=True):
# Set figure and label
fig, ax1 = plt.subplots(figsize=(16, 8))
y_ax_ticks = np.arange(0, max(silhouette_score_values) + 1, 0.1)
x_ax_ticks = np.arange(min_num_k, max_num_k + 1, 1)
ax1.plot(number_of_clusters, silhouette_score_values, "k")
ax1.plot(number_of_clusters, silhouette_score_values, "bo")
ax1.set_title("Silhouette Score Values as Number of Clusters increases", fontsize=22)
ax1.set_yticks(y_ax_ticks, fontsize=15)
ax1.set_ylabel("Silhouette Score Values", fontsize=18)
ax1.set_xticks(x_ax_ticks, fontsize=15)
ax1.set_xlabel("Number Of Clusters", fontsize=18)
# compute the silhouette: optimal and worst result
optimal_number_of_components = number_of_clusters[silhouette_score_values.index(max(silhouette_score_values))]
worst_number_of_components = number_of_clusters[silhouette_score_values.index(min(silhouette_score_values))]
# Plot values annotation
for y_value in silhouette_score_values:
x_value = silhouette_score_values.index(y_value)
x_offset = 1.85
y_offset = 0.005
if max(silhouette_score_values) == y_value:
ax1.annotate(str(round(y_value, 3)),
xy=(x_value + x_offset, y_value + y_offset),
color="green", weight="bold")
elif min(silhouette_score_values) == y_value:
ax1.annotate(str(round(y_value, 3)),
xy=(x_value + x_offset, y_value + y_offset),
color="red", weight="bold")
else:
ax1.annotate(str(round(y_value, 3)),
xy=(x_value + x_offset, y_value + y_offset),
color="black", weight="normal")
# add lines to indicate the best and worst scenario
ax1.vlines(x=optimal_number_of_components, ymin=0, ymax=max(silhouette_score_values), linewidth=2,
color="green",
label="Max Value", linestyle="dashed")
ax1.vlines(x=worst_number_of_components, ymin=0, ymax=min(silhouette_score_values), linewidth=2, color="red",
label="min Value", linestyle="dashed")
# Adding legend
ax1.legend(loc="upper right", prop={"size": 18})
# show and/or save plot
show_and_save_plot(
show=show_on_screen,
save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, const.CLUSTERING_PLOT_FOLDER),
plot_name=const.SILHOUETTE_TAG,
plot_extension=const.JPG
)