-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplex2D.py
397 lines (276 loc) · 9.88 KB
/
simplex2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import numpy as np
import math
import matplotlib.pyplot as plt
from tqdm import trange
def obj_func(A,X, alpha):
'''
Objective function of the gradient descent.
It has no use in this code and is just for information.
Parameters
----------
A : array
Simplex vertices coordinates represented by [(M-1) x M] matrix. M-1 is
dimensionality of the data.
X : array
Data points' coordinates represented by [(M-1) x N] matrix (N = number of data points).
alpha : float
A multiplier to balance the effects of the volume term and the penalty term.
Returns
-------
float
Result of the objective function.
'''
return volume(A)+alpha*(1/np.sum(penalty(A,X)))
def volume(A):
'''
Calculate volume (area) of the simplex using coordinates of vertices.
Parameters
----------
A : array
Simplex vertices coordinates represented by [(M-1) x M] matrix. M-1 is
dimensionality of the data.
Returns
-------
volume_A : float
Volume (area) of the simplex.
'''
M = A.shape[1] # Dimension of the simplex
volume_A=0
for i in range(M):
a_i = A[:, i] # Extract the i-th column as a_i
a_i = a_i[:, np.newaxis]
ones = np.ones(M - 1) # Create a row vector of ones of appropriate size
ones = ones.reshape(1, 2)
A_i = np.delete(A, i, axis=1) # Create A_i by removing the i-th column
A_i_minus_a_i_1T = A_i - np.dot(a_i, ones) # Subtract a_i * 1^T from A_i
det_A_i_minus_a_i_1T = np.linalg.det(A_i_minus_a_i_1T) # Calculate the determinant of A_i - a_i * 1^T
volume_A += 1 / math.factorial(M - 1) * det_A_i_minus_a_i_1T
return volume_A
def penalty(A,X):
'''
Penalty function to enforce the constraint that all the
data lie in the interior of the simplex defined by A.
Parameters
----------
A : array
Simplex vertices coordinates represented by [(M-1) x M] matrix. M-1 is
dimensionality of the data.
X : array
Data points' coordinates represented by [(M-1) x N] matrix (N = number of data points).
Returns
-------
float
Penalty function matrix (P). P is a solution to square system of linear equations X=AP.
If simplex is not overlaping data points, all elements of P will be between 0 and 1.
'''
ones_row = np.ones((1, X.shape[1]))
tildX=np.vstack((X, ones_row))
ones_row = np.ones((1, A.shape[1]))
tildA=np.vstack((A, ones_row))
P = np.linalg.lstsq(tildA, tildX, rcond=None)[0]
return P#, 1/np.sum(P)
def compute_auxiliaries(A):
'''
Calculate matrix B consisting of vectors b. Used for gradient of volume function.
Vectors b_i are normal from the affine plane determined by the remaining vertices
to the a_i vertice.
Parameters
----------
A : array
Simplex vertices coordinates represented by [(M-1) x M] matrix. M-1 is
dimensionality of the data.
Raises
------
ValueError
If data is not 2D.
Returns
-------
array
[(M-1) x M] Matrix of normals.
'''
M = A.shape[1]
b_vectors = []
if M==3: #2D case
for i in range(M):
# Select the i-th vertex
a_i = A[:, i]
# Create a matrix A_i by removing the i-th vertex from A
A_i = np.delete(A, i, axis=1)
a_i_proj=find_projection(A_i[:, 0], A_i[:, 1], a_i)
normal=a_i-a_i_proj
# vector= A_i[:, 0]-A_i[:, 1]
# print(round(np.dot(normal,vector)))
b_vectors.append(normal)
return np.array(b_vectors).T
else:
raise ValueError("Dimention is not 2D...")
def grad_volume(volume, A):
'''
Gradient of the volume function.
Parameters
----------
volume : float
Volume of the simplex defined by A vertices.
A : array
Simplex vertices coordinates represented by [(M-1) x M] matrix. M-1 is
dimensionality of the data.
Returns
-------
array
[(M — 1) x M] matrix.
'''
B=compute_auxiliaries(A)
squared_magnitudes = np.sum(B**2, axis=0)
# Divide each vector coordinate by its squared magnitude
normalized_B = B / squared_magnitudes
grad=volume*normalized_B
return grad
def grad_penalty(A, P):
'''
Gradient of the penalty function.
Parameters
----------
A : array
Simplex vertices coordinates represented by [(M-1) x M] matrix. M-1 is
dimensionality of the data.
P : array
Penalty function [M X N] matrix. M is dimensionality of data +1,
N is number of data points.
Returns
-------
array
[(M — 1) x M] matrix.
'''
ones_row = np.ones((1, A.shape[1]))
tildA=np.vstack((A, ones_row))
D = 1 / (P**2)
grad=np.linalg.inv(tildA).T @ D @ P.T
return np.delete(grad, -1, axis=0)
def find_projection(point1, point2, point_i):
'''
Calculate coordinates for the projection of a_i vertice onto
the linie created by other vertices (2D case) in order to calculate
normal vector from projection to a_i.
Parameters
----------
point1 : array
Coordinates of the first vertice as a column vector.
point2 : array
Coordinates of the second vertice as a column vector.
point_i : array
Coordinates of the remaining vertice as a column vector.
Returns
-------
array
Coordinates of the projected vertice of point_i as a column vector.
'''
# Extract the coordinates of the first two points
x1, y1 = point1
x2, y2 = point2
# Check if the line is horizontal (slope is 0)
if y2 - y1 == 0:
# Projection point has the same y-coordinate as the line
xp = point_i[0] # Projection point x-coordinate is the same as the x-coordinate of the third point
yp = y1
else:
# Calculate the slope and intercept of the line through the first two points
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
# Calculate the perpendicular slope
m_ortho = -1 / m
# Extract the coordinates of the third point
xi, yi = point_i
# Calculate the y-intercept of the line through the third point
b_ortho = yi - m_ortho * xi
# Calculate the x-coordinate of the projection point
xp = (b - b_ortho) / (m_ortho - m)
# Calculate the y-coordinate of the projection point
yp = m * xp + b
return np.array([xp, yp])
def new_params(old_A, X, mu1, mu2, P, volume):
'''
Calculate new coordinates of vertices for gradient descent.
Parameters
----------
old_A : array
Previous value of matrix A.
X : array
Data points' coordinates represented by [(M-1) x N] matrix (N = number of data points).
mu1 : float
Step variable for the gradient of Volume function.
mu2 : TYPE
Step variable for the Penalty function.
P : array
Penalty function [M X N] matrix. M is dimensionality of data +1,
N is number of data points.
volume : float
Volume of the simplex defined by A vertices.
Returns
-------
A : array
New value of A.
'''
gradV=grad_volume(volume, old_A)
gradF=grad_penalty(old_A, P)
A=old_A - mu1 * gradV - mu2 * gradF
# A=old_A-alpha*(gradV+gradF)
return A
def shrink_wrap(X, mu1, init_mu2, epochs, A=None, plot_prog=None):
if A==None:
centroid = np.mean(X, axis=1)
max_distance = np.max(np.linalg.norm(X - centroid[:, np.newaxis], axis=0))
init_a = centroid + np.array([-1, -1]) * max_distance * 2
init_b = centroid + np.array([1, -1]) * max_distance * 2
init_c = centroid + np.array([0, 2]) * max_distance * 2
A=np.vstack((init_a, init_b, init_c))
A=A.T
P=penalty(A, X)
if np.any(P > 1):
raise ValueError("Initial simplex is overlaping with data. Change coordinates of A...")
V=volume(A)
if plot_prog:
for epoch in trange(epochs):
mu2=0.000001 * (epochs+1 - epoch)/(epochs)
A=new_params(A, X, mu1, mu2, P, V)
P=penalty(A, X)
V=volume(A)
if epoch%plot_prog==0:
a,b,c=A.T
plt.scatter(X[0], X[1], s=0.5)
plt.plot([a[0], b[0], c[0], a[0]],
[a[1], b[1], c[1], a[1]], 'k-', linewidth=0.2)
plt.title(f'simplex at every {plot_prog} iteration')
if V<0:
raise ValueError("Negative volume. Change step parameters...")
break
plt.show()
print('final area ',V)
return A
else:
for epoch in trange(epochs):
mu2=0.000001 * (epochs+1 - epoch)/(epochs)
A=new_params(A, X, mu1, mu2, P, V)
P=penalty(A, X)
V=volume(A)
if V<0:
raise ValueError("Negative volume. Change step parameters...")
break
print('final area ',V)
return A
N = 10 # number of data points
M = 3 # dimensionality M-1
X = np.loadtxt('data.txt').T
epochs=10000
mu1=0.001
init_mu2=0.000001
A=shrink_wrap(X, mu1, init_mu2, epochs, plot_prog=100)
V=volume(A)
a,b,c=A.T
fig = plt.figure(figsize=(6, 6))
plt.scatter(X[0], X[1], s=0.5)
plt.plot([a[0], b[0], c[0], a[0]],
[a[1], b[1], c[1], a[1]], 'k-', linewidth=0.8)
plt.title(f'{epochs} epochs, Area={V:.3f}')
plt.xlim(-0.5,0.9)
plt.ylim(-0.5, 0.9)
plt.show()