-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathload_data.py
112 lines (85 loc) · 3.02 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from functions2 import *
import numpy as np
import math
from scipy import optimize
import pylab as pl
from IPython import display as dp
'''
T = 5.5
time_step = 1/12
range_ = np.arange(time_step,T+time_step,time_step)
vol_window = 2*252
term_window= 6000
interpol_method = 'spline' #NelsonSiegel
solver_method = 'BFGS'
'''
def f(x):
try:
return float(x)/100
except:
return np.nan
#
# it is expected to ger errors on the log because of
# divisions by zero. Those are removed from the data
# on the last lines
def get_vols(irs,vol_window):
np.seterr(all='ignore')
irs = irs[-vol_window:]
ratio = irs[1:]/irs.shift(1)[1:]
ratio = ratio[ratio.notnull()].copy()
for i in ratio.columns:
ratio = ratio[ratio[i].notnull()]
log_ratio = np.log(ratio)
log_ratio = log_ratio[log_ratio!=np.inf]
log_ratio = log_ratio[log_ratio!=-np.inf]
return np.std(log_ratio)
class get_data():
def __init__(self,T,time_step,term_window,interpol_method='spline'):
range_ = np.arange(time_step,T+time_step,time_step)
#https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15
#https://fred.stlouisfed.org/categories/115
data = pd.read_csv('data.csv')
data = data.set_index('Time Period')
data.index = pd.to_datetime(data.index)
#data_ = data.dropna()
data_ = data.applymap(self.f).copy()
#data_ = data_[data_['RIFLGFCM06_N.B']>0] # keeping only data with at least one strip
#data_ = data_.loc['7/31/2001':]
print('Total of nulls {}'.format(data_.isnull().sum()))
total = data_.shape[0]
data_ = data_.fillna(0)
#data_=data_.dropna()
print('\n Total of nulls {}'.format(data_.isnull().sum().sum()))
TS = BootStraper()
y = data_[-term_window:]
y=y[y!=0].dropna() #removing days in which yields where quoted as zero
x_= None
r = TS.BootStrap(x_,y,method=interpol_method)
#r[-100:].plot(legend=False)
#plt.plot(np.array(r.columns),r[-1:].as_matrix().flatten(),label='Bootstrapped');
#plt.plot(TS.x,data_[-1:].as_matrix().flatten(),label='yield_curve');
#plt.legend()
r=r.dropna()
interpol = CubicS(x=np.array(r.columns),x_=range_)
f = interpol.spline
irs = pd.DataFrame(data=apply(f,r),index=r.index,columns=range_)
#irs[-2000:].plot(legend=False);
self.irs = irs
self.data_=data_
self.range_ =range_
def f(self,x):
try:
return float(x)/100
except:
return np.nan
def vols(self,vol_window):
irs = self.irs
range_ = self.range_
vols = get_vols(irs,vol_window)
plt.plot(vols)
plt.title('vols, roll back window of {}'.format(vol_window));
last_term = np.exp(-1*irs[-1:]*range_)
plt.figure()
#plt.title('rates')
#plt.plot(range_,last_term.as_matrix().flatten());
return {'Price':last_term.as_matrix().flatten(),'Vol':list(vols)}